Math, asked by amansahare318, 2 months ago


 integration\frac{dx}{1 +  \cos(2x) ?}

Answers

Answered by assingh
25

Topic :-

Indefinite Integration

To Integrate :-

\displaystyle \int\dfrac{dx}{1+\cos 2x}

Solution :-

\displaystyle \int\dfrac{dx}{1+\cos 2x}

\displaystyle \int\dfrac{dx}{1+\cos^2x-\sin^2x}

(\because \cos 2x = cos^2x-sin^2x)

\displaystyle \int\dfrac{dx}{(1-\sin^2x)+\cos^2x}

\displaystyle \int\dfrac{dx}{\cos^2x+\cos^2x}

(\because 1-\sin^2x=\cos^2x)

\displaystyle \int\dfrac{dx}{2\cos^2x}

\displaystyle \int\dfrac{\sec^2x.dx}{2}

\left ( \because \dfrac{1}{\cos x}=\sec x\right )

\dfrac{1}{2}\displaystyle \int\sec^2x.dx

\dfrac{\tan x}{2}+C

\left (\because \displaystyle \int\sec^2x.dx=\tan x\right )

Here, C\:is\:constant\:of\:integration.

Answer :-

\dfrac{\tan x}{2}+C

Additional Formulae :-

\displaystyle \int \sin x = -\cos x+C

\displaystyle \int \cos x = \sin x+C

\displaystyle \int \tan x = \ln|\sec x|+C

\displaystyle \int \csc x = \ln|\csc x-\cot x|+C

\displaystyle \int \sec x = \ln|\sec x+\tan x|+C

\displaystyle \int \cot x = \ln|\sin x|+C

Similar questions