Math, asked by ankitpradhan2002, 4 months ago


integration of   1 -  cos(2x )  \div {1 +  cos(2x)

Answers

Answered by amansharma264
10

EXPLANATION.

⇒ ∫1 - cos(2x)/1 + cos(2x) dx.

As we know that,

⇒ cos(2x) = 2cos²∅ - 1.

⇒ cos(2x) + 1 = 2cos²∅.

⇒ cos(2x) = 1 - 2sin²∅.

⇒ cos(2x) - 1 = -2sin²∅.

⇒ 1 - cos(2x) = 2sin²∅.

Substitute the value in equation, we get.

⇒ ∫1 - cos(2x)/1 + cos(2x)dx.

⇒ ∫2sin²x/2cos²x dx.

⇒ ∫tan²x.dx

Formula of tan²x,

⇒ tan²x = sec²x - 1.

Substitute the value in equation, we get.

⇒ ∫(sec²x - 1)dx.

⇒ ∫sec²x - ∫dx.

⇒ tan(x) - x + c.

                                                                                                                     

MORE INFORMATION.

(1) = ∫sin(x)dx = -cos(x) + c.

(2) = ∫cos(x)dx = sin(x) + c.

(3) = ∫tan(x)dx = ㏒(sec(x)) + c  Or  -㏒(cos(x)) + c.

(4) = ∫cot(x)dx = ㏒(sin(x)) + c.

(5) = ∫sec(x)dx = ㏒(sec(x) + tan(x)) + c  Or  -㏒(sec(x) - tan(x)) + c  Or ㏒tan(π/4 + x/2) + c.

(6) = ∫cosec(x)dx = -㏒(cosec(x) + cot(x)) + c  Or  ㏒(cosec(x) - cot(x) + c. Or ㏒tan(x/2) + c.

(7) = ∫sec(x).tan(x).dx = sec(x) + c.

(8) = ∫cosec(x).cot(x).dx = -cot(x) + c.

(9) = ∫sec²x.dx = tan(x) + c.

(10) = cosec²dx = -cot(x) + c.

Answered by AnswersQueen14
4

I=integ.of (1+cos2x)/(1-cos2x) .dx

I =integ.of (1+2cos^2x-1)/(1–1+2sin^2x).dx

I=integ.of (2cos^2x)/(2sin^2x).dx

I=integ. of cot^2x.dx

I=integ.of (cosec^2x-1).dx

I= -cot x - x +C , Answer.

Attachments:
Similar questions