Math, asked by monusharma58, 1 year ago


integration \sqrt{1 +  \sin(2x) dx }

Answers

Answered by Swarup1998
13

Solution :

\mathsf{\int \sqrt{(1+sin2x)}\:dx}

\small{\mathsf{=\int \sqrt{(sin^{2}x+cos^{2}x+2\:sinx\:cosx)}\:dx}}

\mathsf{=\int \sqrt{(sinx+cosx)^{2}}\:dx}

\mathsf{=\int (sinx+cosx)\:dx}

\mathsf{=\int sinx\:dx+\int cosx\:dx}

\mathsf{=-cosx+sinx+C}

where C is integral constant

 \boxed{\small{\mathsf{\int \sqrt{1+sin2x}\:dx=-cosx+sinx+C}}}

which is the required integral


monusharma58: thanks swarup bhai
Answered by GodBrainly
28
 \bf \huge \underline{ \: \: \: \: Solution \: \: \: \: \: : } \\ \\ \\ \\ \\ \mathbf{ \int \sqrt{1 + \sin{2x}} \: dx} \\ \\ \to \mathbf{ \int \sqrt{({ \sin}^{2}x +{ \cos}^{2}x + 2 \sin x \cos x} ) \: dx} \\ \\ \to \int \bf ( \sin x + \cos x) \: dx \\ \\ \to \int \bf \sin x \: dx + \int \cos x \: dx \\ \\ \to \boxed{\boxed{\bf - \cos x + \sin x + C}} \\ \\ \\ \\ \sf where \: C \: is \: an \: integral \: constant.
Similar questions