Math, asked by kummarinagasatyanara, 4 months ago


interigration \: of \:  3 \sqrt{2 {x}^{2} } dx

Answers

Answered by SnehalRBaral
6

Answer:

 \frac{3}{ \sqrt{2} }  {x}^{2}

Step-by-step explanation:

int \: 3 \sqrt{2 {x}^{2} } dx

int \: 3 \sqrt{2}  |x| dx

 \frac{3 \sqrt{2} x^{1 + 1} }{1 + 1}

 \frac{ \:  \:  \:3 \sqrt{2} \:  {x}^{2}  \:  \: }{2}

 \frac{3}{ \sqrt{2} }  {x}^{2}

hope it will help u ❣️

Answered by diwanamrmznu
3

GIVEN:-

.

 \implies \int \: 3 \sqrt{2x {}^{2} } dx \\

SOLUTION:-

 \implies \int \: 3 \sqrt{2x {}^{2} }dx \\  \\  \implies \int \: 3 \sqrt{2}    \cancel{\sqrt{x {}^{ \cancel2} } }dx \\  \\  \implies \int \: 3 \sqrt{2} xdx

we know that

 \implies  \pink{\int \: xdx =  \frac{x {}^{n + 1} }{n + 1} } \\

 \implies \: 3 \sqrt{2} \: \frac{x {}^{1 + 1} }{1 + 1}  \\  \\  \implies \: 3 \sqrt{2} x {}^{2} \frac{1}{2}   \\  \\  \implies \: 3  \cancel{\sqrt{2} } \frac{1}{ \sqrt{2}  \cancel{ \sqrt{2} }}

 \implies \:  \frac{3}{ \sqrt{2} } {x}^{2}   \\

____________________________

I hope it helps you

Similar questions