Math, asked by javidmalek712, 9 months ago


intigral \:  \sqrt{1 +  \sin(2x \  \: } dx \: limit \: 0to\pi \div 4

Answers

Answered by BrainlyPopularman
38

GIVEN :

  \\ \bf \implies \int_{0}^{ \frac{\pi}{4}}  \sqrt{1 +  \sin(2x)}.dx  \\

TO FIND :

Value of integration = ?

SOLUTION :

• Let –

  \\ \bf \implies I =  \int_{0}^{ \frac{\pi}{4}}  \sqrt{1 +  \sin(2x)}.dx  \\

• Using identity –

  \\ \bf \to  \:  \: \sin(2x)   = 2 \sin(x)  \cos(x)  \\

  \\ \bf \to  \:  \:  \sin^{2} (x)  +  \cos^{2} (x)  = 1 \\

  \\ \bf \implies I =  \int_{0}^{ \frac{\pi}{4}}  \sqrt{\sin^{2} (x)  +  \cos^{2} (x) +2\sin(x) \cos(x) }.dx  \\

  \\ \bf \implies I =  \int_{0}^{ \frac{\pi}{4}}  \sqrt{ \{\sin(x)  +  \cos(x) \}^{2}}.dx  \\

  \\ \bf \implies I =  \int_{0}^{ \frac{\pi}{4}} \{ \sin(x)  +  \cos(x) \}.dx  \\

  \\ \bf \implies I =  \int_{0}^{ \frac{\pi}{4}} \sin(x) .dx + \int_{0}^{ \frac{\pi}{4}} \cos(x).dx  \\

  \\ \bf \implies I =  \bigg[ -  \cos(x) \bigg]_{0}^{ \frac{\pi}{4}} + \bigg[ \sin(x) \bigg]_{0}^{ \frac{\pi}{4}} \\

  \\ \bf \implies I =  - \bigg[\cos \bigg(\dfrac{\pi}{4} \bigg) -  \cos(0) \bigg]+ \bigg[\sin \bigg(\dfrac{\pi}{4} \bigg) -  \sin(0) \bigg]\\

  \\ \bf \implies I =  - \bigg[ \dfrac{1}{ \sqrt{2} }  - 1 \bigg]+ \bigg[\dfrac{1}{ \sqrt{2} }-0 \bigg]\\

  \\ \bf \implies I = \bigg[1 -  \dfrac{1}{ \sqrt{2} }  \bigg]+ \bigg[\dfrac{1}{ \sqrt{2} }\bigg]\\

  \\ \bf \implies I =1 -  \cancel\dfrac{1}{ \sqrt{2} } + \cancel \dfrac{1}{ \sqrt{2} }\\

  \\ \large\implies{ \boxed{ \bf I =1}}\\

Similar questions