solve it
Answers
e
−2t
cos(t)−2e
−2t
sin(t)
L^{-1}\{\frac{s}{s^2+4s+5}\}L
−1
{
s
2
+4s+5
s
}
\mathrm{Expand\:}\frac{s}{s^2+4s+5}:\quad \frac{s+2}{(s+2)^2+1}-2\cdot \frac{1}{(s+2)^2+1}Expand
s
2
+4s+5
s
:
(s+2)
2
+1
s+2
−2⋅
(s+2)
2
+1
1
=L^{-1}\{\frac{s+2}{(s+2)^2+1}-2\cdot \frac{1}{(s+2)^2+1}\}=L
−1
{
(s+2)
2
+1
s+2
−2⋅
(s+2)
2
+1
1
}
\mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}UsethelinearitypropertyofInverseLaplaceTransform:
\mathrm{For\:functions\:}f(s),\:g(s)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\{a\cdot f(s)+b\cdot g(s)\}=a\cdot L^{-1}\{f(s)\}+b\cdot L^{-1}\{g(s)\}Forfunctionsf(s),g(s)andconstantsa,b:L
−1
{a⋅f(s)+b⋅g(s)}=a⋅L
−1
{f(s)}+b⋅L
−1
{g(s)}
=L^{-1}\{\frac{s+2}{(s+2)^2+1}\}-2L^{-1}\{\frac{1}{(s+2)^2+1}\}=L
−1
{
(s+2)
2
+1
s+2
}−2L
−1
{
(s+2)
2
+1
1
}
L^{-1}\{\frac{s+2}{(s+2)^2+1}\}:\quad e^{-2t}\cos (t)L
−1
{
(s+2)
2
+1
s+2
}:e
−2t
cos(t)
L^{-1}\{\frac{1}{(s+2)^2+1}\}:\quad e^{-2t}\sin (t)L
−1
{
(s+2)
2
+1
1
}:e
−2t
sin(t)
=e^{-2t}\cos (t)-2e^{-2t}\sin (t)=e
−2t
cos(t)−2e
−2t
sin(t)