Physics, asked by Anonymous, 1 month ago

 \large \bf \dag {\underline{Question:-}}

The time period of vertical oscillation of a light spring with a block A of mass M is T.If another block B of mass m is attached to block A ,the time period of oscillations is doubled.Find the value of  \bf {\frac{m}{M}}

@Physics professionals,do answer
#Need detailed explanation !
->No spamming please!​

Answers

Answered by Anonymous
40

\large \rm {\underbrace{\underline{Question\: 1:}}}

\bf\red{\underline{\underline{we \: know\: that:}}} \\ \\ \bf \green{\underline{\underline{time\: period\: :}}}

 \bf= 2\pi \sqrt{ \frac{m}{k} }  \\

\bf \blue {{{where \: m\:is \: mass}}}

\bf\ \: {{{and}}}

 \bf \blue {{{where \: k\:is \:spring \: constant}}}

\bf \pink {{{according \: to \: question}}}

 \bf{{T}^{1}=2 \: T}

\large \rm{\underbrace{\underline{now}}}

 \bf\red{{T}^{1}=2 \: T=2\pi \sqrt{ \frac{M+ m}{k} }} \\

 \bf\blue{{T}^{1} = \cancel2 \: T} = \cancel2k\sqrt{ \frac{M+ m}{k}} \\

\bf{ \frac{\orange{T}^{2}}{ {\orange\pi}^{2} } = \frac{M+ m}{k} } \\

 \bf{{{divide \: by \: m}}}

 \bf\frac{k \: \: \red{T}^{2} }{ {\pi}^{2} M} = \pink{1 + \frac{M}{m}} \\

\bf\green{ \frac{M}{m}} =\frac{k \: \: \red{T}^{2} }{ {\pi}^{2} M}- 1 \\

\large \rm{\underbrace{\underline{put \: }}}

 \bf\red{T}^{2} = 4 {\pi}^{2}\pink{ \frac{M}{k}} \\

\large \rm{\underbrace{\underline{so \: :}}}

 \bf \frac{k \: \red{T}^{2} }{ {\pi}^{2} m} = \cancel\frac{k \: \red{T}^{2} }{ {\pi}^{2} m} \\

\ \bf 4 { \cancel\pi}^{2} \green { \cancel\frac{m}{k} }  \\

\large \rm{\underbrace{\underline{so \: :}}}

 \bf\frac{m}{M} = 4 - 1 = 3  \\

\bf \purple{Answer \: is \: 3}

  • refer the attachment

Attachments:
Answered by ItzAdityaKarn
8

weknowthat:

timeperiod:

\begin{gathered} \bf= 2\pi \sqrt{ \frac{m}{k} } \\ \end{gathered}=2πkm

\bf \blue {{{where \: m\:is \: mass}}}

\bf\ \: {{{and}}}

\bf \blue {{{where \: k\:is \:spring \: constant}}}

\bf \pink {{{according \: to \: question}}}

\bf{{T}^{1}=2 \: T}T1=2T

\large \rm{\underbrace{\underline{now}}}

\begin{gathered} \bf\red{{T}^{1}=2 \: T=2\pi \sqrt{ \frac{M+ m}{k} }} \\ \end{gathered}T1=2T=2πkM+m

\begin{gathered} \bf\blue{{T}^{1} = \cancel2 \: T} = \cancel2k\sqrt{ \frac{M+ m}{k}} \\ \end{gathered}T1=2T=2kkM+m

\begin{gathered}\bf{ \frac{\orange{T}^{2}}{ {\orange\pi}^{2} } = \frac{M+ m}{k} } \\ \end{gathered}π2T2=kM+m

\bf{{{divide \: by \: m}}}

\begin{gathered} \bf\frac{k \: \: \red{T}^{2} }{ {\pi}^{2} M} = \pink{1 + \frac{M}{m}} \\ \end{gathered}π2MkT2=1+mM

\begin{gathered}\bf\green{ \frac{M}{m}} =\frac{k \: \: \red{T}^{2} }{ {\pi}^{2} M}- 1 \\ \end{gathered}mM=π2MkT2−1

\large \rm{\underbrace{\underline{put \: }}}

\begin{gathered} \bf\red{T}^{2} = 4 {\pi}^{2}\pink{ \frac{M}{k}} \\ \end{gathered}T2=4π2kM

\large \rm{\underbrace{\underline{so \: :}}}

\begin{gathered} \bf \frac{k \: \red{T}^{2} }{ {\pi}^{2} m} = \cancel\frac{k \: \red{T}^{2} }{ {\pi}^{2} m} \\ \end{gathered}π2mkT2=π2mkT2<

so:

4−1=3

Similar questions