| x | + y = 4
x + 3 | y | = 6
Find out the values of x and y.
(3 , 1) ; ; (- 9 , - 5) ;
I want complete explanation with correct steps.
@Takenname, mods, stars and users help me.
Moduless function
Answers
EXPLANATION.
⇒ |x| + y = 4. - - - - - (1).
⇒ x + 3|y| = 6. - - - - - (2).
As we know that,
Case = 1.
⇒ |x| ≥ 0.
⇒ x + y = 4. - - - - - (1).
⇒ x + 3y = 6. - - - - - (2).
Subtract both equation (1) & (2), we get.
⇒ - 2y = - 2.
⇒ y = 1.
Put the value of y = 1 in equation (1), we get.
⇒ x + 1 = 4.
⇒ x = 4 - 1.
⇒ x = 3.
Values of x = 3 & y = 1.
Case = 2.
⇒ |x| ≤ 0.
⇒ - x + y = 4. - - - - - (1).
⇒ x - 3y = 6. - - - - - (2).
From equation (1) & (2), we get.
⇒ - 2y = 10.
⇒ y = - 5.
Put the value of y = - 5in equation (2), we get.
⇒ x - 3(-5) = 6.
⇒ x + 15 = 6.
⇒ x = 6 - 15.
⇒ x = - 9.
Values of x = - 9 & y = - 5.
Case = 3.
⇒ |x| = - a ≤ x ≤ a.
Apply modulus function on equation (1), we get.
x ≤ a.
⇒ - x + y = 4. - - - - - (1).
⇒ x + 3y = 6. - - - - - (2).
From equation (1) & (2), we get.
⇒ 4y = 10.
⇒ y = 10/4 = 5/2.
Put the value of y = 5/2 in equation (2), we get.
⇒ x + 3(5/2) = 6.
⇒ x + 15/2 = 6.
⇒ x = 6 - 15/2.
⇒ x = 12 - 15/2.
⇒ x = - 3/2.
Values of x = -3/2 & y = 5/2.
Case = 4.
Apply modulus function on equation (2), we get.
x ≤ a.
⇒ x + y = 4. - - - - - (1).
⇒ x - 3y = 6. - - - - - (2).
From equation (1) & (2), we get.
Subtract both the equation, we get.
⇒ 4y = - 2.
⇒ y = -1/2.
Put the value of y = -1/2 in equation (1), we get.
⇒ x - 1/2 = 4.
⇒ x = 4 + 1/2.
⇒ x = 8 + 1/2.
⇒ x = 9/2.
Values of x = 9/2 & y = -1/2.
MORE INFORMATION.
Properties of modulus function.
(1) = |x| ≤ a ⇒ - a ≤ x ≤ a.
(2) = |x| ≥ a ⇒ x ≤ - a Or x ≥ a.
(3) = |x + y| = |x| + |y| ⇒ x, y ≥ 0 Or x ≤ 0, y ≤ 0.
(4) = |x - y| = |x| - |y| ⇒ x ≥ 0 And |x| ≥ |y| Or x ≤ 0 And y ≤ 0 And |x| ≥ |y|.
(5) = |x ± y| ≤ |x| + |y|.
(6) = |x + y| ≥ |x| - |y|.
(7) = |x - y| ≥ |x| - |y|.
Answer:
| x | + y = 4
x + 3 | y | = 6
Find out the values of x and y.
(3 , 1) ; ; (- 9 , - 5) ;
I want complete explanation with correct steps.
@Takenname, mods, stars and users help me.
Moduless function