Math, asked by kailashmannem, 3 months ago

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

| 2x - 1 | > - 2

Solve for x.

 \orange{\textsf{Class:-}} 11th

 \orange{\textsf{Topic:-}} Moduless function

I want complete explanation of the answer with suitable steps.

@Takenname,@Amansharma and mods help me.

 \red{\textsf{Don't Spam.}}

Answers

Answered by XxHappiestWriterxX
34

Question :

  • | 2x - 1 | > - 2 Solve for x.

Concept :

  • We have to solve x on this question.

Let's Start :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     \purple{:  \implies}\sf |2x - 1|  >  - 2 \\  \\  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: Since  \: |2x - 1|  \: is  \: always +ve \:  and -2  \: is -ve \\  \\  \\  \\  \sf|2x-1| is  \: always  \: great  \: than -2 \\  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: So \:  the  \: inequality \:  is  \: always \:  true  \: for  \: any  \: value  \: of  \: x \\  \\  \\  \\  : \implies \sf All  \: Real  \: numbers

The Result can be shown in multiple forms.

All real numbers Interval Notation : ( -∞, ∞ )

Other information :

  • Simplify = Reducing the lowest term .

  • Inequality = A mathematical expression which shows that two quantities are not equal.

  • variable = A letter used to represent a number value in an expression or an equation.

  • Interval = A set of values between two endpoints.

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: |2x - 1| >  - 2

As we know,

Modulus function is defined as

\begin{gathered}\begin{gathered}\bf\:\rm :\longmapsto\:  |x|  = \begin{cases} &\sf{x \:  \:  \: if \: x \geqslant 0} \\ &\sf{ - x \:  \:  \:  \: if \: x \:  <  \: 0} \end{cases}\end{gathered}\end{gathered}

\bf\implies \: |x| \: can \: never \: be \: negative \: for \: x \in \: R

Now, It is given that

\rm :\longmapsto\: |2x - 1|  >  - 2

As

\rm :\longmapsto\: |2x - 1|   \:  \: \cancel{ < } \:  \: 0

\bf\implies \: |2x - 1| \geqslant 0

\bf\implies \:x \:  \in \:  R

Additional Information :-

\rm :\longmapsto\: |x| < y \implies \:  - y < x < y

\rm :\longmapsto\: |x|  \leqslant  y \implies \:  - y  \leqslant  x  \leqslant  y

\rm :\longmapsto\: |x|  >  y \implies \:  x <  - y \: or \: x  > y

\rm :\longmapsto\: |x|   \geqslant   y \implies \:  x  \leqslant   - y \: or \: x   \geqslant  y

\rm :\longmapsto\: |x - a| < b \implies \: a - b < x < a + b

\rm :\longmapsto\: |x - a|  \leqslant  b \implies \: a - b  \leqslant  x  \leqslant  a + b

Similar questions