Math, asked by taqueerizwan2006, 4 months ago


{ \large{ \bf{✪ \:  \: If \:  \: x =  2 +  \sqrt{3} }}}
{ \large{ \bf{➢ \:  \: Then \:  \: find \:  =  \:{ \bigg(} x +  \dfrac{1}{x}{ \bigg) }}}}
✔ Please solve it correctly .
✒ Don't spam, otherwise 20 answers will be reported !!​

Answers

Answered by dibyangshughosh309
27

Answer:

  • = 4

Step-by-step explanation:

Given :

  •  \sf{x = 2 +  \sqrt{3} }

To find :

  • { \bf{ the \: value \: of \: = \:{ \bigg(} x + \dfrac{1}{x}{ \bigg) }}}

Solution :

__________________________________________

 \\  \sf :  \implies \: x +  \frac{1}{x}  \\  \\

 \\  \sf :  \implies \: (2 +  \sqrt{3} ) +  \frac{1}{(2 +  \sqrt{3} )}  \\  \\

___________________________________

 \\  \mathbf{ Rationalise \:  \: ( \frac{1}{2 +  \sqrt{3}})} \\  \\

 \\  \sf :  \:  \longrightarrow  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\

 \\  \sf :  \:  \longrightarrow \:  \frac{ 1(2 -  \sqrt{3} )}{(2) {}^{2} - ( \sqrt{3} {)}^{2}   } \\  \\

 \\  \sf :  \:  \longrightarrow \:  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\

 \\  \sf :   \: \longrightarrow {2 -  \sqrt{3} } \\  \\

___________________________________

 \\  \sf :  \implies(2 +  \sqrt{3} ) + (2 -  \sqrt{3} ) \\  \\

 \\  \sf :  \implies2 + 2  + \sqrt{3 }  -  \sqrt{3}   \\   \\

 \\  \sf :  \implies \boxed{ \pink{ \frak{4}}} \\  \\

__________________________________________

Therefore, the value of \underline{\sf{x + \frac{1}{x} = 4}}

Similar questions