Math, asked by ItsRuchikahere, 3 months ago


 \large \bf  \orange  {Namaste}  \: \red{ Everyone }
Find dy/dx
If
 \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf y =  x  \times {sin}^{ - 1} x}

Answers

Answered by Thatsomeone
13

 \tt y = x{sin}^{-1}x \\ \\ \tt \boxed{\bold{\underline{\green{\tt Multiplication\:Rule: \frac{d(uv)}{dx} = \frac{du}{dx}.v + \frac{dv}{dx}.u }}}} \\ \\ \tt \therefore \frac{dy}{dx} = \frac{dx}{dx}.{sin}^{-1}x + \frac{d({sin}^{-1}x)}{dx}.x \\ \\ \therefore  \tt \frac{dy}{dx} = {sin}^{-1}x + \frac{x}{\sqrt{1+{x}^{2}}} \\ \\ \tt \therefore \boxed{\bold{\underline{\red{\tt \frac{dy}{dx} = {sin}^{-1}x + \frac{x}{\sqrt{1+{x}^{2}}} }}}}

Answered by assingh
27

Topic :-

Differentiation

To Differentiate :-

\sf{y=x\sin^{-1}x}

Solution :-

\sf{y=x\sin^{-1}x}

\sf{\dfrac{dy}{dx}=\dfrac{d(x\sin^{-1}x)}{dx}}

\sf{\dfrac{dy}{dx}=\sin^{-1}x\cdot\dfrac{dx}{dx}+x\cdot\dfrac{d(\sin^{-1}x)}{dx}}

\sf {\left(\because \dfrac{d(fg)}{dx}= g\dfrac{df}{dx}+f\dfrac{dg}{dx} \right)}

\sf{\dfrac{dy}{dx}=\sin^{-1}x+x\cdot\dfrac{d(\sin^{-1}x)}{dx}}

\sf {\left(\because \dfrac{dx}{dx}=1\right)}

\sf{\dfrac{dy}{dx}=\sin^{-1}x+x\cdot\dfrac{1}{\sqrt{1-x^2}}}

\sf {\left(\because \dfrac{d(\sin^{-1}x)}{dx}=\dfrac{1}{\sqrt{1-x^2}}\right)}

\sf{\dfrac{dy}{dx}=\sin^{-1}x+\dfrac{x}{\sqrt{1-x^2}}}

Answer :-

\boxed{\sf{\dfrac{dy}{dx}=\sin^{-1}x+\dfrac{x}{\sqrt{1-x^2}}}}

Additional Formulae :-

\sf{\dfrac{d(\cos^{-1}x)}{dx}=\dfrac{-1}{\sqrt{1-x^2}}}

\sf{\dfrac{d(\tan^{-1}x)}{dx}=\dfrac{1}{1+x^2}}

\sf{\dfrac{d(\sec^{-1}x)}{dx}=\dfrac{1}{|x|\sqrt{x^2-1}}}

\sf{\dfrac{d(\csc^{-1}x)}{dx}=\dfrac{-1}{|x|\sqrt{x^2-1}}}

\sf{\dfrac{d(\cot^{-1}x)}{dx}=\dfrac{-1}{1+x^2}}

Similar questions