Lᴇᴛ A ᴀɴᴅ B ʙᴇ sᴇᴛs ; if A∩X = B∩X = ∅ ᴀɴᴅ A∪X = B∪X ғᴏʀ sᴏᴍᴇ sᴇᴛ X.Sʜᴏᴡ ᴛʜᴀᴛ A=B..
ƘíղժӀվ ղօ ՏԹɑʍ.
ภєє๔ ฬєll є×קlคเภє๔ ɑภรฬєг.
Answers
Answered by
59
Answer:
A ∩ X = B ∩ X = ∅
A ∪ X = B ∪ X
Let,
A = A ∩ (A ∪ X)
⇒ A = A ∩ (B ∪ X)
∵ A ∪ X = B ∪ X
By distributive law,
A ∩ (B ∪ X) = (A ∩ B)∪(A ∩ X)
= (A ∩ B) ∪ ∅
(A ∩ X) = B ∩ X = ∅
∴ A = A ∩ B ____ (1)
Let,
B = B ∩ (B ∪ X)
⇒ B = B ∩ (A ∪ X)
∵ A ∪ X = B ∪ X
Again by distributive law,
B ∩ (A ∪ X) = (B ∩ A)∪(B ∩ X)
= (B ∩ A) ∪ ∅
(A ∩ X) = B ∩ X = ∅
∴ B = (B ∩ A)
⇒ B = (A ∩ B) ____ (2)
From equation (1) and (2), we have
A = (A ∩ B) = B
⇒ A = B
Hence Proved !!
Answered by
3
Answer:
A ∩ X = B ∩ X = ∅
A ∪ X = B ∪ X
Let,
A = A ∩ (A ∪ X)
⇒ A = A ∩ (B ∪ X)
∵ A ∪ X = B ∪ X
By distributive law,
A ∩ (B ∪ X) = (A ∩ B)∪(A ∩ X)
= (A ∩ B) ∪ ∅
(A ∩ X) = B ∩ X = ∅
∴ A = A ∩ B ____ (1)
Let,
B = B ∩ (B ∪ X)
⇒ B = B ∩ (A ∪ X)
∵ A ∪ X = B ∪ X
Again by distributive law,
B ∩ (A ∪ X) = (B ∩ A)∪(B ∩ X)
= (B ∩ A) ∪ ∅
(A ∩ X) = B ∩ X = ∅
∴ B = (B ∩ A)
⇒ B = (A ∩ B) ____ (2)
From equation (1) and (2), we have
A = (A ∩ B) = B
⇒ A = B
Hence Proved !!
Step-by-step explanation:
tq for thanks.mere friend banoge ap
Similar questions