Math, asked by Anonymous, 2 months ago


 \large \blue{ \underline{\maltese \textsf{ \:Find the derivative of : - }}}
‎ ‎ ‎ ‎ ‎ ‎
 \boxed{ \sf \large \sqrt{\cos x \sqrt{ \cos \:x \sqrt{ \cos \: x \sqrt{ \cos \: x  } .}. } .} \infty }

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

{\sqrt{\cos x \sqrt{ \cos \:x \sqrt{ \cos \: x \sqrt{ \cos \: x } .}. } .} \infty }

Let assume that

\rm :\longmapsto\:y = {\sqrt{\cos x \sqrt{ \cos \:x \sqrt{ \cos \: x \sqrt{ \cos \: x } .}. } .} \infty }

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2}  = {{cos x \sqrt{ \cos \:x \sqrt{ \cos \: x \sqrt{ \cos \: x } .}. } .} \infty }

can be rewritten as

\rm :\longmapsto\: {y}^{2}  = {{cos x  \times y} }

\rm :\longmapsto\: {y}^{2} - ycosx = 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({y}^{2} - ycosx )= 0

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}(u - v) = \dfrac{d}{dx}u - \dfrac{d}{dx}v}}

So, using this, we get

\rm :\longmapsto\:\dfrac{d}{dx} {y}^{2}  - \dfrac{d}{dx}y \: cosx = 0

We know,

\boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} }}

and

\boxed{ \bf{ \: \dfrac{d}{dx}(u. v) =u \dfrac{d}{dx}v  + v \dfrac{d}{dx}u}}

So, using these two results, we get

\rm :\longmapsto\:2y\dfrac{d}{dx}y - \bigg(y\dfrac{d}{dx}cosx + cosx\dfrac{d}{dx}y\bigg)  = 0

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}cosx =  -  \: sinx}}

So, using these results, we get

\rm :\longmapsto\:2y\dfrac{dy}{dx} - \bigg( - ysinx + cosx\dfrac{dy}{dx} \bigg)  = 0

\rm :\longmapsto\:2y\dfrac{dy}{dx}  +  ysinx  -  cosx\dfrac{dy}{dx}  = 0

\rm :\longmapsto\:\dfrac{dy}{dx}(2y  -  cosx)=  - ysinx

\rm :\implies\:\dfrac{dy}{dx} = \dfrac{ - y \: sinx}{2y - cosx}

\bf :\implies\:\dfrac{dy}{dx} = \dfrac{ y \: sinx}{cosx - 2y}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions