If 2y cosθ = x sinθ and, 2x secθ - y cosecθ = 3. Then find the value of (x² + 4y²)
Thanks ;)
Answers
(1)
2y cos∅ = x sin∅
=> sin∅ = (2y/x) cos∅
(2)
2x sec∅ - ycosec∅ = 3
=> 2x sec∅ - (y/sin∅) = 3
=> (2x/cos∅) - (y/sin∅) = 3
=> cos∅ = (x/2)
We have sin²∅ + cos²∅ = 1
=> (4y²/x² cos²∅) + (x²/4) = 1
=> 4y² + x² = 4
#BeBrainly
AnswEr :
- If 2y cosθ = x sinθ and, 2x secθ - y cosecθ = 3
- Then find the value of (x² + 4y²)
• From Above Equations cosθ = sinθ, this means ;
» (θ + θ) = 90
» 2θ = 90
» θ = 45°
• Using the Value of θ = 45° in Equations :
⇒ 2y cosθ = x sinθ
⇒ 2y cos45° = x sin45°
- cos45° = sin45° = 1 /√2
⇒ 2y × 1 /√2 = x × 1 /√2
- cancelling 1 /√2 both sides
⇒ 2y = x
⇒ x = 2y —( 1 )
⇒ 2x secθ - y cosecθ = 3
⇒ 2x sec45° - y cosec45° = 3
- sec45° = cosec45° = √2
⇒ ( 2x × √2 ) - ( y × √2 ) = 3
⇒ 2√2x - √2y = 3
⇒ (2√2 × 2y) - √2y = 3 —[ from ( 1 )]
⇒ 4√2y - √2y = 3
⇒ 3√2y = 3
- Dividing Each term by 3
⇒ √2y = 1
⇒ y = 1 /√2
_________________________________
• Now Let's Head to the Question :
⇒ ( x² + 4y² )
⇒ ( 2y )² + 4 × ( y )² —[ from ( 1 )]
⇒ ( 2 × 1 /√2 )² + 4 × ( 1 /√2 )²
⇒ ( 2 /√2 )² + 4 × ( 1 /√2 )²
⇒ ( 4 /2 ) + ( 4 /2 )
⇒ ( 2 + 2 )
⇒ 4
჻ Value of ( x² + 4y² ) is 4.