Math, asked by Anonymous, 11 days ago


  \large\bold \red{ \frac{d}{dx} \bigg ( {5}^{4^{3 {}^{2 {}^{1} {}^{x}}}} \bigg)}


PLEASE ANSWER MY QUESTION​

Answers

Answered by sajan6491
4

{ \frac{d}{dx} \bigg ( {5}^{4^{3 {}^{2 {}^{1} {}^{x}}}} \bigg)}

\frac{d}{dx} {5}^{{4}^{{3}^{{2}^{x}}}}

{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}(\frac{d}{dx} {4}^{{3}^{{2}^{x}}})

{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}\times {4}^{{3}^{{2}^{x}}}\ln{4}(\frac{d}{dx} {3}^{{2}^{x}})

{{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}\times {4}^{{3}^{{2}^{x}}}\ln{4}\times {3}^{{2}^{x}}\ln{3}(\frac{d}{dx} {2}^{x})}

{\ln{5}\ln{4}\ln{3}\ln{2}\times {5}^{{4}^{{3}^{{2}^{x}}}}\times {4}^{{3}^{{2}^{x}}}\times {3}^{{2}^{x}}\times {2}^{x}}

Answered by OoAryanKingoO78
4

Answer:

{ \frac{d}{dx} \bigg ( {5}^{4^{3 {}^{2 {}^{1} {}^{x}}}} \bigg)}

\frac{d}{dx} {5}^{{4}^{{3}^{{2}^{x}}}}

{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}(\frac{d}{dx} {4}^{{3}^{{2}^{x}}})

{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}\times {4}^{{3}^{{2}^{x}}}\ln{4}(\frac{d}{dx} {3}^{{2}^{x}})

{{5}^{{4}^{{3}^{{2}^{x}}}}\ln{5}\times {4}^{{3}^{{2}^{x}}}\ln{4}\times {3}^{{2}^{x}}\ln{3}(\frac{d}{dx} {2}^{x})}

{\ln{5}\ln{4}\ln{3}\ln{2}\times {5}^{{4}^{{3}^{{2}^{x}}}}\times {4}^{{3}^{{2}^{x}}}\times {3}^{{2}^{x}}\times {2}^{x}}

Similar questions