Math, asked by Anonymous, 23 hours ago


 \large \bold \red{  \log  i( {i}^{x} )  =  \log i ( 2)}

Don't spam otherwise report your answer​

Answers

Answered by sajan6491
14

  \bold \red{ \cancel{ \log i}( \cancel{ {i}}^{x} ) = \log i ( 2)}

 \bold \red{x =  \frac{ ln(2) }{ ln(i) } }

 \bold \red{=  \frac{ ln(2) }{ \cancel{ ln}( \cancel{ {e}}^{i \frac{\pi}{2} } ) } }

 \bold \red{ =  \frac{i \cdot ln(2) \cdot2 }{i \cdot i \cdot\frac{\pi}{ \cancel2}  \cdot \cancel2 } }

  \bold \red{=   \frac{ - 2i  \: ln(2) }{ \pi} }

Answered by OoAryanKingoO78
2

Answer:

  \bold \green{ \cancel{ \log i}( \cancel{ {i}}^{x} ) = \log i ( 2)}

 \bold \purple{x =  \frac{ ln(2) }{ ln(i) } }

 \bold \blue{=  \frac{ ln(2) }{ \cancel{ ln}( \cancel{ {e}}^{i \frac{\pi}{2} } ) } }

 \bold \red{ =  \frac{i \cdot ln(2) \cdot2 }{i \cdot i \cdot\frac{\pi}{ \cancel2}  \cdot \cancel2 } }

  \bold \red{=   \frac{ - 2i  \: ln(2) }{ \pi} }

Similar questions