Math, asked by Anonymous, 1 month ago


\large \bold \red{(x + 1) {}^{x}  {e}^{x + 1}  = ( \frac{ - x}{e} ) {}^{x} }

Answers

Answered by sajan6491
14

\large \bold \red{(x + 1) {}^{x}  {e}^{x + 1}  = ( \frac{ - x}{e} ) {}^{x} }

{\large \bold \red{ \bigg((x + 1) {}^{x}  {e}^{x + 1}   \bigg) {}^{ \frac{1}{x} } = \bigg ( (\frac{ - x}{e} ) {}^{x}\bigg) {}^{ \frac{1}{x} }  }}

  \large\bold \red{ \frac{(x + 1)}{x} e^{1 +  \frac{1}{x} }  =  \cancel \frac{1}{x}  -  \frac{ \cancel{x}}{e} }

 \bold \red{W \bigg((1 +  \frac{1}{x} )e {}^{1 +  \frac{1}{x} }  \bigg) = W -  \frac{1}{e}  \bigg)}

  \large \bold \red{1 + \frac{1}{x}   =  - 1}

 \large \bold \red{x =  \frac{ - 1}{2} }

Answered by OoAryanKingoO78
2

Answer:

\large \bold \red{(x + 1) {}^{x}  {e}^{x + 1}  = ( \frac{ - x}{e} ) {}^{x} }

{\large \bold \red{ \bigg((x + 1) {}^{x}  {e}^{x + 1}   \bigg) {}^{ \frac{1}{x} } = \bigg ( (\frac{ - x}{e} ) {}^{x}\bigg) {}^{ \frac{1}{x} }  }}

  \large\bold \red{ \frac{(x + 1)}{x} e^{1 +  \frac{1}{x} }  =  \cancel \frac{1}{x}  -  \frac{ \cancel{x}}{e} }

 \bold \purple{W \bigg((1 +  \frac{1}{x} )e {}^{1 +  \frac{1}{x} }  \bigg) = W -  \frac{1}{e}  \bigg)}

  \large \bold \purple{1 + \frac{1}{x}   =  - 1}

 \large \bold \purple{x =  \frac{ - 1}{2} }

Similar questions