Math, asked by Fαírү, 4 months ago

\large\bold{\underline{\underline{Question:-}}}


\sf{If\:\dfrac{\cos\:x}{a_1}=\dfrac{\cos\:2x}{a_2}=\dfrac{\cos\:3x}{a_3}}\sf{Prove\: that\:\:\sin^2\dfrac{x}{2}=\dfrac{2a_2-a_1-a_3}{4a_2}}

━━━━━━━━━━━━━━━

Note : Step by step Explanation required! Don't skip any single step!
▪️Spam answer will be reported.
▪️Best answer will be marked as brainliest.

All the best! :)​


masihnirmala1986: hello
masihnirmala1986: hii

Answers

Answered by masihnirmala1986
19

Answer:

RHS=2a2−a1−a34a2. =14(2−a1a2−a3a2). =14(2−cosxcos2x−cos3x cos2x). =14(2−cosx+cos3xcos2x). =14(2−2cos2xcosxcos2x). =24(1−cosx). =12×2sin2(x2).


masihnirmala1986: hello
sameeha343: hlo
sadondas27sadonDas: koi lyrics Koi Linux
Answered by IdyllicAurora
103

\\\;\underbrace{\underline{\sf{Umderstanding\;the\;Concept\;:-}}}

Here the Concept of Trigonometry has been used. We see we are given relation and we need to prove another given statement using the first one. Firstly we can simplify the equation to be proved and then apply the values we have from the first equation in it to find the answer.

Let's do it !!

____________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{2\:\sin^{2}\:\dfrac{x}{2}\;=\;(1\;-\;\cos\:x)}}}

____________________________________________

To Prove :-

\\\;:\mapsto\;\;\bf{\blue{\sin^{2}\:\dfrac{x}{2}\;=\;\dfrac{2a_{2}\;-\;a_{1}\;-\;a_{3}}{4a_{2}}}}

____________________________________________

Solution :-

Given,

\\\;\odot\;\;\rm{\orange{\dfrac{\cos\:x}{a_{1}}\;=\;\dfrac{\cos\:2x}{a_{2}}\;=\;\dfrac{\cos\:3x}{a_{3}}}}

From here by cross multiplication, we can derive that,

\\\;\sf{\rightarrow\;\;\dfrac{a_{1}}{a_{2}}\;=\;\red{\dfrac{\cos\:x}{\cos\:2x}}}

And,

\\\;\sf{\rightarrow\;\;\dfrac{a_{3}}{a_{2}}\;=\;\red{\dfrac{\cos\:3x}{\cos\:2x}}}

Now firstly, let's simplify the equation which is to be proved. Then,

\\\;\sf{\green{:\rightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{2a_{2}\;-\;a_{1}\;-\;a_{3}}{4a_{2}}}}}

By separating the numerator with denominator, this can be written as,

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\bigg(\dfrac{2a_{2}}{4a_{2}}\bigg)\;-\;\bigg(\dfrac{a_{1}}{4a_{2}}\bigg)\;-\;\bigg(\dfrac{a_{3}}{4a_{2}}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\bigg(\dfrac{2}{4}\bigg)\;-\;\bigg(\dfrac{a_{1}}{4a_{2}}\bigg)\;-\;\bigg(\dfrac{a_{3}}{4a_{2}}\bigg)}}

Now taking the denominator that is ¼ as common, we get

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\dfrac{a_{1}}{a_{2}}\;-\;\dfrac{a_{3}}{a_{2}}\bigg)}}

Now here applying the value which we got earlier, we get

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\dfrac{\cos\:x}{\cos\:2x}\;-\;\dfrac{\cos\:3x}{\cos\:2x}\bigg)}}

Taking - sign in common,

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\bigg[\dfrac{\cos\:x}{\cos\:2x}\;+\;\dfrac{\cos\:3x}{\cos\:2x}\bigg]\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\bigg[\dfrac{\cos\:x\;+\;\cos\:3x}{\cos\:2x}\bigg]\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\bigg[\dfrac{2\cos\:2x\:\cos\:x}{\cos\:2x}\bigg]\bigg)}}

Cancelling cos 2x , we get

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;\bigg[2\cos\:x\bigg]\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2\;-\;2\cos\:x\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{4}\:\bigg(2(1\;-\;\cos\:x)\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{2}{4}\:(1\;-\;\cos\:x)}}

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{2}\:(1\;-\;\cos\:x)}}

We know that,

\\\;\odot\;\;\sf{\pink{2\:\sin^{2}\:\dfrac{x}{2}\;=\;(1\;-\;\cos\:x)}}

Now using this value and applying in equation,

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\dfrac{1}{2}\;\times\;(2\:sin^{2}\;\dfrac{x}{2})}}

Cancelling 2, we get

\\\;\sf{:\Longrightarrow\;\;\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\bigg(\sin^{2}\;\dfrac{x}{2}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\purple{\sin^{2}\:\dfrac{x}{2}\;=\;\bf{\sin^{2}\;\dfrac{x}{2}}}}

Clearly LHS = RHS.

Hence, Verified .

____________________________________________

More to know :-

\\\;\tt{\leadsto\;\;\sin^{2}\theta\;=\;1\;-\;\cos^{2}\theta}

\\\;\tt{\leadsto\;\;\sec^{2}\theta\;=\;1\;-\;\cot^{2}\theta}

\\\;\tt{\leadsto\;\;cosec^{2}\theta\;=\;1\;-\;\tan^{2}\theta}

\\\;\tt{\leadsto\;\;cosec\theta\;=\;\dfrac{1}{\sin\theta}}

\\\;\tt{\leadsto\;\;\sec\theta\;=\;\dfrac{1}{\cos\theta}}

\\\;\tt{\leadsto\;\;\cot\theta\;=\;\dfrac{1}{\tan\theta}}


Anonymous: Amazing !
IdyllicAurora: Thanks :)
Fαírү: Tysm for the answer ⛄
IdyllicAurora: No thanks mate and welcome :)
masihnirmala1986: hii friends
Similar questions