The Radius of a Circle is 13cm and length of one of its Chords is 24cm. Find the distance of the chord from the Centre.
→Answer with Explanation
→Don't copy from Google.
Answers
Answered by
31
ʜᴇʏ,
Gɪᴠᴇɴ:-
- ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 13 ᴄᴍ.
- ʟᴇɴɢᴛʜ ᴏғ ᴏɴᴇ ᴄʜᴏʀᴅ ɪs 24 ᴄᴍ.
ᴛᴏ ғɪɴᴅ:-
- ᴅɪsᴛᴀɴᴄᴇ ᴏғ ᴛʜᴇ ᴄʜᴏʀᴅ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ.
sᴏʟᴜᴛɪᴏɴ:-
ᴀʙ ɪs ᴀ ᴄʜᴏʀᴅ.
ᴏᴍ ᴘᴀʀᴇʟʟᴇʟ ᴛᴏ ᴀʙ.
ɪɴ ᴛʀɪᴀɴɢʟᴇ ᴀᴏᴍ, ᴀɴɢʟᴇ ᴏᴍᴀ = 90
ᴛʜᴇʀᴇғᴏʀᴇ,
ᴏA^2 = ᴏᴍ^2 + ᴍᴀ^2
ᴍᴀ ^2 = ᴏᴀ^2 - ᴏᴍ^2
= 13^2 - 5^2
= 169 - 25
Mᴀ = ʀᴏᴏᴛ 144
Mᴀ = 12
ᴄʜᴏʀᴅ ᴀʙ = 2 (Mᴀ)
= 2(12)
= 24
Attachments:
Answered by
148
GIVEN:
- A circle with centre O
- Radius AO = 13 cm
- Chord AB = 24 cm
TO FIND :
The perpendicular distance of the chord from O. Let it be called OM.
OM is perpendicular to the chord AB.
Perpendicular from the centre O to a chord bisects the chord.
So AM = AB/2 = 12 cm
In right triangle AMO , Using Pythagoras’s Theorem,
AO² = AM² + OM²
=> 13² = 12² + OM²
=> 169 = 144 + OM²
=> OM² = 169 - 144 = 25
=> OM = √25 = 5 cm
_______________________________________________________________________
@ᏴɾαίηℓуᏔσηδεɾ❤
Attachments:
amitkumar44481:
Good :-)
Similar questions
English,
2 months ago
Math,
2 months ago
Business Studies,
2 months ago
Computer Science,
6 months ago
Math,
6 months ago
Social Sciences,
11 months ago
Math,
11 months ago
Science,
11 months ago