Math, asked by diliptalpada265, 2 days ago


\large{ \boxed{ \bold \red{ \left[ \begin{array}  { l l l  }  { 3 } & { - 1 } & { 4 } \\ { 2 } & { 3 } & { 1 } \end{array} \right] \left[ \begin{array}  { l l l  }  { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 0 } \\ { - 3 } & { 2 } & { 3 } \end{array} \right]}}}
Answer with proper explanation.

The correct respondent will get 100+ thanks.


Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:\left[ \begin{array} { l l l } { 3 } & { - 1 } & { 4 } \\ { 2 } & { 3 } & { 1 } \end{array} \right] \left[ \begin{array} { l l l } { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 0 } \\ { - 3 } & { 2 } & { 3 } \end{array} \right]

Now,

\red{\rm :\longmapsto\:\left[ \begin{array} { l l l } { 3 } & { - 1 } & { 4 } \\ { 2 } & { 3 } & { 1 } \end{array} \right] _{2 \times 3} \left[ \begin{array} { l l l } { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 0 } \\ { - 3 } & { 2 } & { 3 } \end{array} \right]_{3 \times 3}}

Since, number of columns of pre multiplier is equal to number of rows of post multiplier.

So, it means matrix multiplication is defined.

So,

\rm :\longmapsto\:\left[ \begin{array} { l l l } { 3 } & { - 1 } & { 4 } \\ { 2 } & { 3 } & { 1 } \end{array} \right] \left[ \begin{array} { l l l } { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 0 } \\ { - 3 } & { 2 } & { 3 } \end{array} \right]

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{ccc} 3 - 2 - 12&9 - 1 + 8& 12 + 0 + 12\\2 + 6 - 3& 6 + 3 + 2&8 + 0 + 3\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{ccc} - 11&16& 24\\5& 11&11\end{array}\right]\end{gathered}

Hence,

\boxed{\tt{ \left[ \begin{array} { l l l } { 3 } & { - 1 } & { 4 } \\ { 2 } & { 3 } & { 1 } \end{array} \right] \left[ \begin{array} { l l l } { 1 } & { 3 } & { 4 } \\ { 2 } & { 1 } & { 0 } \\ { - 3 } & { 2 } & { 3 } \end{array} \right] =\begin{gathered}\sf\left[\begin{array}{ccc} - 11&16& 24\\5& 11&11\end{array}\right]\end{gathered}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Matrix multiplication may or may not be Commutative

2. Matrix multiplication is Associative

3. Matrix multiplication is Distributive

Similar questions