Answers
Identity used :-
_____________________________________________
Step-by-step explanation:
Identity used :-
\begin{gathered}\sf \: {a}^{m} \times {a}^{n} = {a}^{m + n} \\\\\end{gathered}
a
m
×a
n
=a
m+n
\begin{gathered}\sf \: {a}^{0} = 1\\\\\end{gathered}
a
0
=1
\begin{gathered}\sf\: {a}^{m} = {a}^{n} ⟹ \: m = n\\\\\end{gathered}
a
m
=a
n
⟹m=n
\begin{gathered}\Large{\underbrace{\sf{\purple{Required\:Solution:}}}}\\\\\end{gathered}
RequiredSolution:
\begin{gathered}\sf \: {5}^{ - 4x} \times {5}^{ {x}^{2} + 4} = 1\\\\\end{gathered}
5
−4x
×5
x
2
+4
=1
\begin{gathered}\sf:\implies \: {5}^{ - 4x \: + \: {x}^{2} + 4} = {5}^{0}\\\\ \end{gathered}
:⟹5
−4x+x
2
+4
=5
0
\begin{gathered}\sf:\implies \: {x}^{2} - 4x + 4 = 0\\\\\end{gathered}
:⟹x
2
−4x+4=0
\begin{gathered}\sf:\implies \: {x}^{2} - 2x - 2x + 4 = 0\\\\\end{gathered}
:⟹x
2
−2x−2x+4=0
\begin{gathered}\sf:\implies \:x(x - 2) - 2(x - 2) = 0\\\\\end{gathered}
:⟹x(x−2)−2(x−2)=0
\begin{gathered}\sf:\implies \:(x - 2)(x - 2) = 0\\\\\end{gathered}
:⟹(x−2)(x−2)=0
\begin{gathered}\sf:\implies \:x = 2\\\\\end{gathered}
:⟹x=2