Math, asked by KnightLyfe, 2 months ago

\large\boxed\colour{purple}{Question:-}

Without actually calculating the zeroes, form a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial 5x²+2x–3

•nσ ѕpαmmíng
•ѕtєp wíѕє єхplαnαtíσn. ​

Answers

Answered by itzbangtanarmy7
13

Answer:

Answer. Without actually calculating the zeroes,form a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial 5x2+2x-3 is 3x^2 - 2x - 5.

hope this helps..if not report :)

Answered by Anonymous
30

Answer:

{ \sf{Given \:  Quadratic  \: Polynomial : 5 {x}^{2}  + 2x - 3}}

  • We have to find the quadratic polynomial whose zeroes Are reciprocal of given quadratic polynomial

  • Let us find sum and product of zeroes for given polynomial

We know that,

  • {{ \sf{ \alpha +  \beta =  \frac{ - b}{a } }}} \\
  • { { \sf{  \alpha \beta =  \frac{c}{a}}}} \\

  \: : { \implies{ \sf{ \alpha +  \beta =  \frac{ - b}{a } =  \frac{ - 2}{5}  }}} \\  \\  : { \implies{ \sf{  \alpha \beta =  \frac{c}{a} =  \frac{ - 3}{5}  }}}

  • We had finded the zeroes. Now we have to reciprocal of the following zeroes.

 :  { \implies{ \sf{ \frac{1}{ \alpha}  +  \frac{1}{  \beta}  = \frac{ \alpha +  \beta}{ \alpha \beta}  =  \frac{2}{3} }}} \\  \\   : { \implies{ \sf{ \frac{1}{ \alpha \beta }  =  \frac{1}{  \frac{ - 3}{5} }  =  \frac{ - 5}{3}}}}

Finding the quadratic polynomial:-

{ \boxed{ \sf{</p><p>General \:  Form :  {x}^{2} - ( \alpha +  \beta)x +  \alpha  \beta }}}

 : { \implies{ \sf{k \bigg[ {x}^{2}  -  \bigg( \frac{2}{3}  \bigg)x +  \bigg( \frac{ - 5}{3}  \bigg) \bigg]}}} \\  \\  : { \implies{ \sf{k \bigg[ {x}^{2} -  \frac{2}{3} x -  \frac{5}{3} \bigg  ]}}} \\  \\  : { \implies{ \sf{k \bigg[  \frac{3 {x}^{2} - 2x - 5 }{3}  \bigg ]}}} \\  \\ taking \: k = 3 \\  \\  : { \implies{ \sf{3 \bigg[ \frac{3 {x}^{2}  - 2x - 5}{3}  \bigg]}}} \\  \\  : { \implies{ \sf{3 {x}^{2}  - 2x - 5}}}

Therefore,

  • 3x² - 2x - 5 is the required polynomial

Similar questions