Math, asked by Anonymous, 1 month ago


\LARGE \boxed{ \underline{\bf \purple{ QUESTION :-}}}


Find the nth derivative of \sf \sqrt{ax + b}

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y =  \sqrt{ax + b}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} \sqrt{ax + b}

\rm :\longmapsto\:y_1 = \dfrac{1}{2} { \bigg(ax + b \bigg)}^{ \dfrac{1}{2}  - 1}\dfrac{d}{dx}(ax + b)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}\bigg \}}

 \red{\rm :\longmapsto\:y_1 = {( - 1)}^{0} \times   \dfrac{a}{2} { \bigg(ax + b \bigg)}^{ -  \dfrac{1}{2}}}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_1 =\dfrac{d}{dx} \dfrac{a}{2} { \bigg(ax + b \bigg)}^{ -  \dfrac{1}{2}}

\rm :\longmapsto\:y_2 =  - \dfrac{1}{2} \times  \dfrac{a}{2} { \bigg(ax + b \bigg)}^{ -  \dfrac{1}{2} - 1} \times a

 \red{\rm :\longmapsto\:y_2 =   {( - 1)}^{1}  \times  \dfrac{ {a}^{2} }{ {2}^{2} }  { \bigg(ax + b \bigg)}^{ -  \dfrac{3}{2}}}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_2 = \dfrac{d}{dx} \bigg( - \dfrac{ {a}^{2} }{ {2}^{2} }  { \bigg(ax + b \bigg)}^{ -  \dfrac{3}{2}} \bigg)

\rm :\longmapsto\:y_3 =  - \dfrac{ {a}^{2} }{ {2}^{2} }   \times  \dfrac{( - 3)}{2} { \bigg(ax + b \bigg)}^{ -  \dfrac{3}{2} - 1} \times a

 \red{\rm :\longmapsto\:y_3 =   {( - 1)}^{2} \dfrac{ 3 \times 1 \times {a}^{3} }{ {2}^{3} } { \bigg(ax + b \bigg)}^{ -  \dfrac{5}{2}}}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_3 =\dfrac{d}{dx} \bigg({( - 1)}^{2} \dfrac{ 3 \times 1 \times {a}^{3} }{ {2}^{3} } { \bigg(ax + b \bigg)}^{ -  \dfrac{5}{2}} \bigg)

\rm :\longmapsto\:y_4 =   {( - 1)}^{2} \dfrac{1 \times 3 \times  {a}^{3} }{ {2}^{3} }   \times  \dfrac{( - 5)}{2} { \bigg(ax + b \bigg)}^{ -  \dfrac{5}{2} - 1} \times a

 \red{\rm :\longmapsto\:y_4 =   {( - 1)}^{3} \dfrac{1 \times 3 \times \times 5 \times   {a}^{4} }{ {2}^{4} }{ \bigg(ax + b \bigg)}^{ -  \dfrac{7}{2}}}

So on make out the pattern, we get nth derivative is

 \red{\rm :\longmapsto\:y_n =   {( - 1)}^{n - 1} \dfrac{{a}^{n} }{ {2}^{n} }(1 \times 3 \times  -  -  \times (2n - 3)) { \bigg(ax + b \bigg)}^{ -  \dfrac{(2n - 1)}{2}}}

Answered by Anonymous
32

\large\fbox\colorbox{pink}{❥Answer}

 \\

\sf \frac{dy}{dx}  =  \frac{d}{dx} \sqrt{ax + b}

\sf y_1 =  \frac{1}{2} (ax + b)^{ \frac{1}{2} - 1 }  \frac{d}{dx} (ax + b)

\sf y_1 = ( - 1)^{0}  \times  \frac{a}{2} (ax + b)^{ \frac{ - 1}{ \:  \: 2} }

\sf \frac{d}{dx} y_1 =  \frac{d}{dx}  \frac{a}{2} (ax + b)^{ \frac{ - 1}{ \:  \: 2} }

\sf y_2 =  \frac{ - 1}{ \:  \: 2}  \times  \frac{a}{2} (ax  + b)^{ \frac{ - 1}{ \:  \: 2}  - 1}  \times a

\sf y_2 =  { (- 1)}^{1}  \times  \frac{ {a}^{2} }{ {2}^{2} } (ax + b)^{ \frac{3}{2} }

\sf \frac{d}{dx} y_2 =  (\frac{ - a^{2}  }{ \:  \:  {2}^{2} } (ax + b)^{ \frac{ - 3}{ \:  \: 2} } )

\sf y_3 =  \frac{ -  {a}^{2} }{ \:  \:  {2}^{2} }  \times  \frac{ - 3}{ \:  \: 2} (ax + b)^{ \frac{ - 3}{ \:  \: 2}  - 1}  \times a

\sf y_3 =  ( - 1)^{2} \frac{3 \times 1 \times  {a}^{2} }{2}  (ax + b)^{ \frac{ - 5}{ \:  \: 2} }

\sf \frac{d}{dx} y_3 =  \frac{d}{dx} ( { - 1)}^{2}  \frac{3 \times 1 \times  {a}^{2} }{ {2}^{3} } (ax + b)^{ \frac{ - 5}{ \:  \: 2} } )

\sf y_4 =  { (- 1)}^{2}  \frac{1 \times 3 \times  {a}^{2} }{ {2}^{3} }  \times  \frac{ - 5}{ \:  \: 2} (ax + b)^{ \frac{ - 5}{ \:  \: 2}  - 1}  \times a

\sf y_4 =  {( - 1)}^{3}  \frac{1 \times 3 \times 5 \times  {a}^{4} }{  {2}^{4}  } (ax + b)^{ \frac{ - 9}{ \:  \: 2} }

We get nth derivative :-

\sf \red{yn =  {( - 1)}^{n - 1}  \frac{ {a}^{n} }{ {2}^{n} } (1 \times 3 \times -  \times (2n - 3)(ax + b)^{ \frac{ - (2n - 1)}{2} } }

\tiny\tt{ Hope \: this \: helps \: don't \: report }

Similar questions