❶ If m² + m'² + 2mm' cosθ = 1, n² + n'² + 2nn' cosθ = 1 and mn + m'n' + (mn' + m'n) cosθ = 0, prove that m² + n² = cosec²θ
❷ If a cosθ – b sin θ = c, show that a sinθ + b cosθ = ±
Answer with proper explanation.
Kindly don't spam!
Answers
Solution (1)
____________________________
Given :
- m² + m'² + 2 mm' cos θ = 1
- n² + n'² + 2 nn' cos θ = 1
- mn + m'n' + ( mn' + m'n ) cos θ = 0 ____equation ①
To prove :
- m² + n² = cosec²θ
Proof :
As given
→ m² + m'² + 2 mm' cos θ = 1
adding and subtracting m²cos²θ in LHS
→ m² + m'² + 2 mm' cos θ + m²cos²θ - m²cos²θ = 1
Rearranging the terms
→ ( m'² + m²cos²θ + 2 mm' cos θ ) + m² - m²cos²θ = 1
using algebraic identity [ (a + b)² = a² + b² + 2 ab ]
→ ( m' + m cos θ )² + m² ( 1 - cos²θ ) = 1
using trigonometric identity [ 1 - cos²A = sin²A ]
→ ( m' + m cos θ )² + m² sin²θ = 1
→ ( m' + m cos θ )² = 1 - m² sin² θ ___equation ②
Similarly in n² + n'² + 2 nn' cos θ = 1
by adding and subtracting n²cos²θ in LHS and solving in the same way
we will get,
→ ( n' + n cos θ )² = 1 - n² sin² θ ___equation ③
Now,
multiplying equation ② and ③
→ ( m' + m cos θ )² ( n' + n cos θ )² = ( 1 - m² sin² θ ) ( 1 - n² sin² θ )
→ [( m' + m cos θ ) ( n' + n cos θ )]² = ( 1 - m² sin² θ ) ( 1 - n² sin² θ )
→ ( m'n' + m'n cos θ + mn' cos θ + mn cos²θ )² = 1 - n² sin² θ - m² sin² θ + m²n²sin⁴θ
→ [{m'n' + cos θ ( m'n + mn' )}+ mn cos²θ]² = 1 - sin²θ ( m² + n² ) + m²n²sin⁴θ
Using equation ① in LHS as ; m'n' + ( mn' + m'n ) cosθ = - mn
→ [ ( - mn ) + mn cos²θ ]² = 1 - sin²θ ( m² + n² ) + m²n²sin⁴θ
→ [ - mn ( 1 - cos²θ ) ]² = 1 - sin²θ ( m² + n² ) + m²n²sin⁴θ
using trigonometric identity [ 1 - cos²A = sin²A ]
→ ( - mn sin²θ )² = 1 - sin²θ ( m² + n² ) + m²n²sin⁴θ
→ m²n²sin⁴θ = 1 - sin²θ ( m² + n² ) + m²n²sin⁴θ
→ 0 = 1 - sin²θ ( m² + n² )
→ sin²θ ( m² + n² ) = 1
→ m² + n² = 1/sin²θ
→ m² + n² = cosec²θ
PROVED.
____________________________
Solution (2)
____________________________
Given :
- a cosθ - b sinθ = c
To prove :
- a sin θ + b cos θ = ± √( a² + b² - c² )
Proof :
As given
→ a cosθ – b sin θ = c
squaring both sides
→ ( a cosθ – b sin θ )² = c²
using algebraic identity [ (a - b)² = a² + b² - 2 ab ]
→ a²cos²θ + b²sin²θ - 2 ab sinθ cosθ = c²
putting [cos²θ = 1 - sin²θ] and [sin²θ = 1 - cos²θ]
→ a²( 1 - sin²θ ) + b²( 1 - cos²θ ) - 2 ab sinθ cosθ = c²
→ a² - a²sin²θ + b² - b²cos²θ - 2 ab sinθ cosθ = c²
→ a² + b² = c² + a²sin²θ + b²cos²θ + 2 ab sinθ cosθ
→ a² + b² - c² = a²sin²θ + b²cos²θ + 2 ab sinθ cosθ
using algebraic identity [ a² + b² + 2 a b = ( a + b )² ] in RHS
→ a² + b² - c² = ( a sinθ + b cosθ )²
→ ( a sinθ + b cosθ )² = a² + b² - c²
→ a sinθ + b cosθ = ± √( a² + b² - c²)
PROVED.
____________________________
see in attachment mate ✌️
SORRY FOR BAD HANDWRITING...!! :)
HAVE A GREAT DAY AHEAD ❣️