Math, asked by Anonymous, 4 months ago

\large\cal\red{\underline{\overline{\mid{\blue{Question}}\mid}}}⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ 


if tan(a+b)=√3 and tan(a-b)=1/√3 find a and b if 0°<A+B<90°..




Answers

Answered by Legend42
27

Answer:

Question

if tan(a+b)=√3 and tan(a-b)=1/√3 find a and b if 0°<A+B<90°..

Answer

given \: tan(a + b) =  \sqrt{3}⟹ a + b = 60° .....(1) \\ tan(a - b) =  \frac{1}{ \sqrt{3} }   ⟹a - b = 30°..........(2) \\ (1) + (2) ⟹2a = 90 \\ a =  \frac{90°}{2}  \\ a = 45

put \: A \: value \: in(1) \\   b = 60° - 45° \\ b = 15°

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {blue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@Legend42}}}}}}}}}}}}}}}

Answered by Anonymous
3

tan (A + B) = √3 ⇒ A + B = 60° ………….. (i)

tan (A – B) = \frac{1}{\sqrt{3} } ⇒ A – B = 30° ………… (ii)

From Eqn. (i) + Eqn.(ii), we have

2A = 90

∴ A = 45°

From eqn. (i), A + B = 60°

45° + B = 60°  

∴ B = 15

Therefore values of a and b are 45° and 15° respectively.

Similar questions