Math, asked by ltzAsh, 15 days ago

 \Large \color{lime} \bigstar \: \pmb{\mathbb{ \color{navy}QU \color{blue}ES \purple{T I \pink{ \ON}}}} \: \bigstar



Find the sum of the Arithmetic Series
4 + 9 + 14 + . . . . + 54

Answers

Answered by SparklingBoy
129

▪Given :-

An Arthematic Series :

  \large\mathfrak{4+9+14+ \:  .\: . \:. \:  +54}

-------------------------------

▪To Find :-

Sum of Given Series

▪Formulas

1》  for Sum :-

 \bf S_n= \dfrac{ n}{2}  \bigg \{a + a_n\bigg \}

2》For nth term

 \bf a_n = a + (n - 1)d

Where ,

  • a = First term

  • \sf{a_n} = nth Term

  • n = Number of terms

  • d = Common difference

-------------------------------

▪Solution :-

Here

  • a = 4
  • d = 5
  • \sf{a_n} = 54

《Calculating Number of Terms》

Using Formula of nth term :-

 54 = 4  \: +  \: (n - 1)5 \\  \\ 5n - 5 = 54 - 4 \\  \\ 5n = 50 +5\\  \\ n =  \frac{ \cancel{55 {}} }{ \cancel{5}}  \\  \\ \Large \purple{ \implies  \underline {\boxed{{\bf n = 11} }}}

《Calculating  Sum》

Using Formula For Sum :-

 \sf SUM =  \dfrac{11}{2}  \bigg \{ 4 + 54\bigg \} \\  \\  = \dfrac{11}{2}\times(58) \\  \\\Large \purple{ \implies  \underline {\boxed{{\bf SUM = 319} }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------


amitkumar44481: Great :-)
Answered by TYKE
61

Question :

Find the sum of the Arithmetic Series

4 + 9 + 14 + . . . . + 54

To find :

The sum in arithmetic series

Solution :

Given series is 4,9,14,..

Clearly, the given sequence is an AP with first term a=4 and the common difference d=5.

We know that

 \sf \small  a_{n}  =a+(n−1)d

By putting the values we get

54 = 4 + (n - 1)5

54 = 4 + 5n - 5

54 - 4 + 5 = 5n

55 = 5n

n = 55/5

n = 11

For getting the sum we need to apply

 \sf \rarr \frac{n}{2} (a + a_{n})

By inserting the value we have

 \sf \rarr \frac{11}{2} (4 + 54)

 \rarr \frac{11}{2}  \times 58

 \sf \rarr \frac{11}{ \cancel{2}}  \times  \cancel{58}

 \rarr11 \times 29

 \rarr319

Hence, The sum is 319

Similar questions