Math, asked by Anonymous, 3 months ago


 \large\dag\:\underline{\sf Question:-}

Simplify :-

  \longrightarrow \:  \: \sf{(3^{-7}   \div  3^ {-9})  \times  3^{-4} \: }
– No spamming ⚠️
– Need complete steps with explanation✍️

Answers

Answered by suraj5070
410

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Simplify

 \longrightarrow \: \: \tt{(3^{-7} \div 3^ {-9}) \times 3^{-4} \: }

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \implies \Big({3}^{-7} \div {3}^{-9}\Big) \times {3}^{-4}

 \sf \bf \implies \bigg(\dfrac{{3}^{-7}}{{3}^{-9}}\bigg) \times {3}^{-4}

 {\blue {\boxed {\boxed {\boxed {\green {\sf Using \:\: \dfrac{{a}^{m}}{{a}^{n}}={a}^{m-n}}}}}}}

 \sf \bf \implies \Big({3}^{\big(-7\big)- \big(-9\big)}\Big) \times {3}^{-4}

 \sf \bf \implies \Big({3}^{-7+9}\Big) \times {3}^{-4}

 \sf \bf \implies {3}^{2}\times {3}^{-4}

 {\blue {\boxed {\boxed {\boxed {\green {\sf Using\:\: {a}^{m} \times {a}^{n}={a}^{m+n}}}}}}}

 \sf \bf \implies {3}^{\big(2 \big)+\big(-4\big)}

 \sf \bf \implies {3}^{2-4}

 \sf \bf \implies {3}^{-2}

 {\blue {\boxed {\boxed {\boxed {\green {\sf Using \:\:{a}^{-m} \dfrac{1}{{a}^{m}}}}}}}}

 \sf \bf \implies \dfrac{1}{{3}^{2}}

 \implies {\orange {\boxed {\boxed {\purple {\sf \bf \dfrac{1}{9}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\pink {\sf Basic\:Identities \:of\:exponents}}

 \bf \dfrac{{a}^{m}}{{a}^{n}}={a}^{m-n}

 \bf {a}^{m} \times {a}^{n}={a}^{m+n}

 \bf {a}^{-m} \dfrac{1}{{a}^{m}}

 \bf {\big({a}^{m}\big)}^{n} = {a}^{mn}

 \bf {a}^{m} \times {b}^{m} ={ab}^{m}

Answered by MaTaehyung
4

Answer:-

I hope you will understand this and it will help u!!

Attachments:
Similar questions
Math, 9 months ago