Math, asked by Anonymous, 1 day ago

 \large {\dag \; {\underline{\underline{\red{\pmb{\frak{ \; Question \; :- }}}}}}}

Length and Breadth of a rectangle are in the ratio 2:4 and its perimeter is 100 cm. Find its Area.


 {\underline{\rule{200pt}{5pt}}}

 \large {\dag \; {\underline{\underline{\pink{\pmb{\frak{ \; Note \; :- }}}}}}}

 \longrightarrow Answer with proper explaination .
 \longrightarrow Latex used answer will be marked as Brainliest .
 \longrightarrow  \red{\sf{ No \; Spams}}

 {\underline{\rule{200pt}{5pt}}}

Answers

Answered by Anonymous
26

Answer:

Question :

Length and Breadth of a rectangle are in the ratio 2:4 and its perimeter is 100 cm. Find its Area.

\begin{gathered}\end{gathered}

Given :

  • ➺ Ratio of length and breadth of a rectangle = 2:4
  • ➺ Perimeter of rectangle = 100 cm.

\begin{gathered}\end{gathered}

To Find :

  • ➺ Area of rectangle

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{Perimeter_{(Rectangle)}= 2(Length +  Breadth)}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{Area_{(Rectangle)}= Length  \times   Breadth}}}}}}}

\begin{gathered}\end{gathered}

Solution :

Here we have given that the ratio between lenght and breadth of rectangle is 2:4. So, let the lenght and breadth be 2x and 4x.

According to the question :

{\implies{\sf{Perimeter_{(Rectangle)}= 2(Length +  Breadth)}}}

{\implies{\sf{100= 2(2x + 4x)}}}

{\implies{\sf{100= 2(6x)}}}

{\implies{\sf{100= 2 \times 6x}}}

{\implies{\sf{100= 12x}}}

{\implies{\sf{x =  \dfrac{100}{12} }}}

{\implies{\sf{\underline{\underline{\red{x \approx  8.3}}}}}}

Hence, the value of x is 8.3.

 \rule{190}1

Now, we know the value of x. So, the length and breadth of rectangle will be :

  • Lenght = 2x = 2×8.3 = 16.6 cm
  • Breadth = 4x = 4×8.3 = 33.3 cm

 \rule{190}1

Now, finding the area of rectangle by substituting all the given values in the formula :

{\implies{\sf{Area_{(Rectangle)}= Length  \times   Breadth}}}

{\implies{\sf{Area_{(Rectangle)}= 16.6\times   33.2}}}

{\implies{\sf{\underline{\underline\red{Area_{(Rectangle)} \approx \: 551.12 \:  {cm}^{2}}}}}}

Hence, the area of rectangle is 551.12 cm².

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

\rule{220pt}{3pt}

Answered by Anonymous
65

Question

Length and Breadth of a rectangle are in the ratio 2 : 4 and its perimeter is 100 cm . Find its Area .

Answer

 =   \sf\dfrac{5000}{9}  = 555.56   \: {cm}^{2}

Figure

\begin{gathered} \sf{ \red{4x  \: cm}\:}\huge\boxed{ \begin{array}{cc} \footnotesize{  \pink{\sf  \underline{Rectangle}}} \: \: \: \: \:   \:  \:  \\ \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \end{array}} \\ \: \: \: \: \: \sf{ \red{2x \:  cm}}\end{gathered}

Solution

Here , we are given with a rectangle whose length and breadth are in the ratio 2 : 4 respectively. Thus , Let's assume its respective Length = 2x and Breadth = 4x , Also we are provided with a Perimeter = 100 cm

We know that ,

Perimeter of Rectangle = 2(L + B)

Therefore ,

:↦ \sf100 = 2(2x + 4x)

:↦ \sf100 = 2(6x)

:↦ \sf100 = 12x

:↦ \sf x =   \cancel\dfrac{100}{12} \quad  =  \red{ \dfrac{25}{3}}

Now , since we get the measure for x we can easily calculate its respective length and breadth

 \sf \: Length = 2x = 2× \dfrac{25}{3}  =  \red{\dfrac{50}{3} cm}

 \sf \: Breadth = 4x  = 4 \times  \dfrac{25}{3}  =   \red{\dfrac{100}{3}cm }

Now , what we have to calculate is area of the rectangle

Area of Rectangle = length × Breadth

 \sf Area  \: of \:  Rectangle =  \dfrac{50}{3} \times  \dfrac{100}{3}

:↦ \sf \: Area \:  of  \: Rectangle =  \dfrac{5000}{9}

\rm \: Area \:  of  \: Rectangle =  555.56 {cm}^{2}  \: (approx)

 \rule{200pts}{2pt}

Thankyou

Similar questions