Math, asked by Anonymous, 2 days ago


\large {\dag \; {\underline{\underline{\red{\pmb{\frak{ \; Question \; :- }}}}}}}
⇢Find the derivatives of the Following functions which respect to x by using First principle:-

\bf{1). \:  \:  \:  {x}^{ \frac{3}{2} } }
\bf{b). \:  \:  \frac{1}{ax + b} }

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
──────────────────────



\large {\dag \; {\underline{\underline{\green{ \; Note\; :- }}}}}
➼Don't Spam---☁
➼ Need Quality Answer⛄
➼ Best Answer⚡_ I will mark as Brainlist⭐

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
──────────────────────

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-i}}

Given function is

\rm \: f(x) =  {\bigg(x\bigg) }^{\dfrac{3}{2} }  \\

So,

\rm \: f(x + h) =  {\bigg(x + h\bigg) }^{\dfrac{3}{2} }  \\

By using Definition of First Principal,

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}  \:  \\

So, on substituting the values, we get

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm  \frac{{\bigg(x + h\bigg) }^{\dfrac{3}{2} }  - {\bigg(x\bigg) }^{\dfrac{3}{2} } }{h}  \\

can be further rewritten as

\rm \: =  \: \displaystyle\lim_{x + h \to x}\rm  \frac{{\bigg(x + h\bigg) }^{\dfrac{3}{2} }  - {\bigg(x\bigg) }^{\dfrac{3}{2} } }{x + h - x}  \\

We know,

\boxed{\sf{  \: \: \displaystyle\lim_{x \to a}\rm  \frac{ {x}^{n}  -  {a}^{n} }{x - a} \:  =  \:  {na}^{n - 1}  \:  \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{3}{2} {\bigg(x\bigg) }^{\dfrac{3}{2}  - 1}  \\

\rm \: =  \: \dfrac{3}{2} {\bigg(x\bigg) }^{\dfrac{3 - 2}{2}}  \\

\rm \: =  \: \dfrac{3}{2} {\bigg(x\bigg) }^{\dfrac{1}{2}}  \\

\rm \: =  \: \dfrac{3}{2}  \sqrt{x}   \\

So,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{d}{dx}{\bigg(x\bigg) }^{\dfrac{3}{2} }  =  \frac{3}{2} \sqrt{x}  \:  \: }} \\

\large\underline{\sf{Solution-(ii)}} \:

Given function is

\rm \: f(x) = \dfrac{1}{ax + b}  \\

So,

\rm \: f(x) = \dfrac{1}{a(x  + h)+ b} = \dfrac{1}{ax + ah + b}  \\

By, using definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}  \:  \\

So, on substituting the values, we get

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg(\dfrac{1}{ax  + ah+ b} - \dfrac{1}{ax + b}\bigg) \\

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg(\dfrac{ax + b - ax - ah - b}{(ax  + ah+ b)(ax + b)} \bigg) \\

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg(\dfrac{ - ah}{(ax  + ah+ b)(ax + b)} \bigg) \\

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{ - a}{(ax  + ah+ b)(ax + b)} \bigg) \\

\rm \: =  \: \dfrac{ - a}{(ax + b)(ax + b)} \\

\rm \: =  \:  -  \: \dfrac{a}{(ax + b)^{2} } \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \:\dfrac{d}{dx}  \: \dfrac{1}{ax + b} \: =  \:  -  \: \dfrac{a}{(ax + b)^{2} } \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions