Math, asked by Anonymous, 20 days ago

 \large {\dag \; {\underline{\underline{\red{\pmb{\sf{ \; Questions \; :- }}}}}}}


1.] The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of 210 per 100 m² .

2.] A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.


 \\ {\color{cyan}{\underline{\rule{200pt}{3pt}}}}

Avoid Spam :D

Answers

Answered by talpadadilip417
16

Answer:

\color{darkcyan} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

Step-by-step explanation:

Sol.

 \color{darkviolet} \pmb{\[ \begin{aligned} \text { Base diameter } & \tt=14 m \\  \\ \text { Radius } & \tt=14 m \div 2=7 m \\ \\  \text { Curved surface area } & \tt=\pi l \\ \\  & \tt=\frac{22}{7} \times 7 \times 25 m ^{2}=550 m ^{2} \end{aligned} \]}

 \red{ \pmb{ \text{Rate of white-washing is \( ₹ 210 \) per \( 100 m ^{2} \)}}}

Hence cost of white-washing the conical tomb

 \pink{ \tt=₹\left(550 \times \dfrac{210}{100}\right)=₹ 1155 }

Answered by YxMissAnglexY
120

1. \:  \: ➻\:{\underline{\underline\mathfrak\red{Question:--}}}

The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of 210 per 100 m² .

➻\:{\underline{\underline\mathfrak\red{Answer:--}}}

❑ {\underline{\boxed{\bf\green{Given:}}}}

Slant height, l = 25 m

Diameter, d = 14 m

curved surface at the rate of 210 per 100 m² .

❑ {\underline{\boxed{\bf\green{To  \:  \: Find:}}}}

the cost of white-washing the conical tomb = ?

❑ {\underline{\boxed{\bf\green{Solution:}}}}

The slant height of the conical tomb is 25 m and the base diameter is 14 m.

The curved surface area of a right circular cone of base radius(r) and slant height(l) is πrl

Slant height, l = √r2 + h2, where h is the height of the cone.

Diameter, d = 14 m

\bf{Radius, r =  \frac{14}{2}  \:  m = 7  \: m}

Slant height, l = 25 m

{\boxed{\bf\pink{Curved \:   \: surface  \:  \: area = πrl}}}

\bf= { \frac{22}{7}  × 7 m × 25 m}

\bf{=  {550 \: m}^{2} }

Cost of the whitewashing at ₹ 210 per 100 m².

\bf{= (  \frac{210}{100} ) × 550}

➩{\boxed{\bf\purple{  \: ₹  \:  \: 1155}}}

➼ Thus, the cost of whitewashing the conical tomb is ₹1155.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

2. \:  \: ➻\:{\underline{\underline\mathfrak\red{Question:--}}}

A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.

➻\:{\underline{\underline\mathfrak\red{Answer:--}}}

❑{\underline{\boxed{\bf\green{Given:}}}}

radius, r =7 cm

height, h =24 cm

❑ {\underline{\boxed{\bf\green{To  \:  \: Find:}}}}

The area of the sheet required to make 10 such caps = ?

❑{\underline{\boxed{\bf\green{Solution:}}}}

Since the cap is conical in shape, the area of the sheet required to make each cap will be equal to the curved surface area of the cone.

The curved surface area of a right circular cone of base radius(r) and slant height(l) is πrl

Slant height, l = √r² + h² where h is the height of the cone.

Radius, r = 7 cm & Height, h = 24 cm

Slant height,

{\boxed{\bf\pink{l = √r² + h²}}}

= √(7)² + (24)²

= √49 + 576

= √625

= 25 cm

Area of the sheet required to make each cap = πrl

\bf=  \frac{22}{7}  × 7  \: cm × 25  \: cm

= 550 cm²

Area of the sheet required to make 10 such caps = 10 × 550 cm²

➢ \: {\boxed{\bf\purple{ 5500  \: cm²}}}

➼ Thus, the area of the sheet required to make 10 such caps is 5500 cm2.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Attachments:
Similar questions