Math, asked by Anonymous, 18 days ago

 \large {\dag \; {\underline{\underline{\red{\pmb{\textbf{\textsf{ \; Question \; :- }}}}}}}}

 \longmapsto The height and the slant height of a cone are 21 cm and 28 cm respectively . Find :-

 \\

◕ Radius of the Cone
◕ Volume of the Cone


 \\ {\underline{\rule{200pt}{5pt}}}

 \green{\textsf{ Thanks in Advance :D }}

Answers

Answered by mathdude500
106

\large\underline{\sf{Solution-}}

Given that,

Slant height of cone, l = 28 cm

Height of cone, h = 21 cm

Let assume that radius of cone = r cm

We know, slant height (l), height (h) and radius (r) of a cone are interrelated by the relationship

\rm \:  {l}^{2} =  {r}^{2} +  {h}^{2}  \\

\rm \:  {28}^{2} =  {r}^{2} +  {21}^{2}  \\

\rm \:  784 =  {r}^{2} +  441  \\

\rm \: {r}^{2} = 784 - 441  \\

\rm \: {r}^{2} = 343  \\

\rm \: r =  \sqrt{343}  \\

\rm \: r \:  =  \:  \sqrt{7 \times 7 \times 7}  \\

\color{green}\rm\implies \:\boxed{ \rm{ \:r \:  =  \: 7 \sqrt{7}  \: cm \: }} \\

Now, We know volume of cone of radius r and height h is given by

\boxed{ \rm{ \:Volume_{(cone)} \:  =  \:  \frac{1}{3}  \times \pi \:  {r}^{2}  \: h \: }} \\

So, on substituting the values, we get

\rm \: Volume_{(cone)} \:  =  \: \dfrac{1}{3}  \times \dfrac{22}{7}  \times 7 \sqrt{7} \times 7 \sqrt{7}  \times 21 \\

\rm \: Volume_{(cone)} = 22 \times 7 \times 7 \times 7 \\

\color{green}\rm\implies \:\boxed{ \rm{ \:Volume_{(cone)} \:  =  \: 7546  \:  {cm}^{3}   \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Anonymous
277

Answer:

Given that :-

  • Height of Cone is 21 cm.
  • Slant Height of Cone is 28 cm.

To find :-

  • Radius and Volume of Cone?

________________________

Solution:-

Height ( h ) = 21cm

Slant Height ( l ) = 28 cm

»» I By Pythagoras theorem

(slant height)² =(radius)²+(height)²

»» r² = l² - h²

r² = (28)² - (21)²

=> √ 784 - 441

=> √ 343

=> r = 7 √ 7

Therefore, Radius of Cone is 77 cm

Volume =  \frac{1}{3} (\pi {r}^{2}h)

=> { (22/7) × 343 × 21 } / 3

=> 7546

Therefore, Volume \: of \: Cone \: is \: 7546cm³

_________________________

\large\bf\boxed{ɦօքɛ \: ɨȶ \: ɦɛʟքֆ \: ʏօʊ}

Similar questions