Math, asked by SoftyMoon, 18 days ago

 \large {\dag \; {\underline{\underline{\red{\pmb{\textbf{\textsf{ \; Question \; :- }}}}}}}}

 \longmapsto The height and the slant height of a cone are 21 cm and 28 cm respectively . Find :-

 \\

◕ Radius of the Cone
◕ Volume of the Cone


 \\ {\underline{\rule{200pt}{5pt}}}

 \green{\textsf{ Thanks in Advance :D }}

Answers

Answered by talpadadilip417
1

Step-by-step explanation:

\pmb{\color{darkcyan} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}}

 \\  \rule{500pt}{0.1pt} \\

 \text{We have, \( \sf h=21 cm \) and \( \sf l=28 cm \).}

 \\  \[ \begin{aligned} \tt \therefore \quad l^{2}=r^{2}+h^{2} \Rightarrow r & \tt=\sqrt{l^{2}-h^{2}}=\sqrt{(28)^{2}-(21)^{2}} cm \\ \\  \tt \Rightarrow r & \tt=\sqrt{(28+21) \times(28-21)} cm =\sqrt{49 \times 7} cm \\ \\  & \tt=7 \sqrt{7} cm . \end{aligned} \]

 \\  \text{Volume of the cone \(  \tt=\dfrac{1}{3} \pi r^{2} h \)}

 \\  \[ \begin{array}{l} \tt =\left\{\dfrac{1}{3} \times \dfrac{22}{7} \times(7 \sqrt{7})^{2} \times 21\right\} cm ^{3} \\ \\  \tt =(22 \times 343) cm ^{3} \\  \\  \red{ \tt=7546 cm ^{3} } \end{array} \]

Similar questions