Math, asked by Anonymous, 1 day ago

  \large\displaystyle  \red{   { \rm{{\lim_{n \to \infty } {e}^{ - n}  \sum_{ \mathbb{k = 0}}^{n}  \frac{ {n}^{ \mathbb{k}} }{ \mathbb{k!}} }}}}

Answers

Answered by sajan6491
12

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [{e}^{ - n} \sum_{ {k = 0}}^{n} \frac{ {n}^{ {k}} }{ {k!}} \right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \bigg[ {e}^{ - n} \sum_{ {k = 0}}^{n} exp(k  \ln(n)    -   \ln(k!))  \bigg]}}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left  \{{e}^{ - n} \sum_{ {k = 0}}^{n} exp \bigg(n  \ln(n) -   \ln(n!) -   \frac{ {1}^{ {}} }{ {2n}} [k - n]^{2}   \bigg)\right \} }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left  \{ \frac{ {e}^{ - n} {n}^{n}  }{n!}    \int_{0}^{ n}  exp \bigg( -  \frac{1}{2n}  [k - n] {}^{2} \bigg)dk \right \} }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{ {e}^{ - n}  {n}^{n} }{n!} \int_{ - n}^{0}   exp \bigg( -  \frac{ {k}^{2} }{2n}   \bigg)dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{ {e}^{ - n}  {n}^{n} }{n!}\sqrt{2n} \int_{  -  \frac{ \sqrt{n} }{2} }^{0}      exp( -  {k}^{2} )dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{  \sqrt{2}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!} \int_{  -   \infty  }^{0}      exp( -  {k}^{2} )dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{  \sqrt{2}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!}  \frac{ \sqrt{\pi} }{2} \right] }}}}

 \displaystyle \red{ { \sf{ \frac{1}{2} {\lim_{n \to \infty } \left [ \frac{  \sqrt{2\pi}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!}   \right] }}}}

  \huge\red{ \frac{1}{2} }

Answered by IamOnePunchMan
10

Answer:

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [{e}^{ - n} \sum_{ {k = 0}}^{n} \frac{ {n}^{ {k}} }{ {k!}} \right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \bigg[ {e}^{ - n} \sum_{ {k = 0}}^{n} exp(k  \ln(n)    -   \ln(k!))  \bigg]}}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left  \{{e}^{ - n} \sum_{ {k = 0}}^{n} exp \bigg(n  \ln(n) -   \ln(n!) -   \frac{ {1}^{ {}} }{ {2n}} [k - n]^{2}   \bigg)\right \} }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left  \{ \frac{ {e}^{ - n} {n}^{n}  }{n!}    \int_{0}^{ n}  exp \bigg( -  \frac{1}{2n}  [k - n] {}^{2} \bigg)dk \right \} }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{ {e}^{ - n}  {n}^{n} }{n!} \int_{ - n}^{0}   exp \bigg( -  \frac{ {k}^{2} }{2n}   \bigg)dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{ {e}^{ - n}  {n}^{n} }{n!}\sqrt{2n} \int_{  -  \frac{ \sqrt{n} }{2} }^{0}      exp( -  {k}^{2} )dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{  \sqrt{2}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!} \int_{  -   \infty  }^{0}      exp( -  {k}^{2} )dk\right] }}}}

 \displaystyle \red{ { \sf{{\lim_{n \to \infty } \left [ \frac{  \sqrt{2}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!}  \frac{ \sqrt{\pi} }{2} \right] }}}}

 \displaystyle \red{ { \sf{ \frac{1}{2} {\lim_{n \to \infty } \left [ \frac{  \sqrt{2\pi}  {n}^{n +  \frac{1}{2}   } {e}^{ - n} }{n!}   \right] }}}}

  \huge\red{ \frac{1}{2} }

Similar questions