Math, asked by Anonymous, 3 days ago

 \large \displaystyle \rm \red{ \lim_{h \to0} \frac{1}{h}   \int \limits_{ \frac{\pi}{4} }^{ \frac{\pi}{4} + h }  \frac{ \sin(x) }{x}  \: dx}

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

\displaystyle \rm {\red{ \lim_{h \to0} \dfrac{1}{h} \int \limits_{ \frac{\pi}{4} }^{ \frac{\pi}{4} + h } \frac{ \sin(x) }{x} \: dx}}

\displaystyle\rm { = \lim_{h \to0} \dfrac{ \displaystyle\int \limits_{ \frac{\pi}{4} }^{ \frac{\pi}{4} + h } \frac{ \sin(x) }{x} \: dx}{h} }

\displaystyle\rm { = \lim_{h \to0} \dfrac{ \displaystyle  \rm\dfrac{d}{dh}\int \limits_{ \frac{\pi}{4} }^{ \frac{\pi}{4} + h } \frac{ \sin(x) }{x} \: dx}{ \dfrac{d}{dh}(h)} }

\displaystyle\rm { = \lim_{h \to0} \dfrac{ \displaystyle  \rm\dfrac{ \sin \left( \dfrac{\pi}{4} + h\right) }{\dfrac{\pi}{4} + h}  \cdot\dfrac{d}{dh}\left( \dfrac{\pi}{4} + h\right) + 0}{ \dfrac{d}{dh}(h)} }

\displaystyle\rm { = \lim_{h \to0} \dfrac{ \displaystyle  \rm\dfrac{ \sin \left( \dfrac{\pi}{4} + h\right) }{\dfrac{\pi}{4} + h}  \cdot1}{ 1} }

\displaystyle\rm { = \lim_{h \to0} \dfrac{  \sin \left( \dfrac{\pi}{4} + h\right) }{\dfrac{\pi}{4} + h}   }

\rm { =\dfrac{  \sin \left( \dfrac{\pi}{4}\right) }{\dfrac{\pi}{4} }   }

\rm { =\dfrac{ 4  \cdot\dfrac{1}{ \sqrt{2} } }{\pi }   }

\rm { =\dfrac{ 2\sqrt{2}  }{\pi }   }

Similar questions