Math, asked by Anonymous, 6 hours ago

 \large  \displaystyle \sf \pink{\int  \bigg( \sqrt{ cotx }   -   \sqrt{tanx} \bigg ) \: dx}

Answers

Answered by IamIronMan0
93

Answer:

 \purple{ \frac{1}{2 \sqrt{2} }   \log  \bigg| \frac{ \sqrt{ \tan(x) }  +  \sqrt{ \cot(x) } +  \sqrt{2}  }{ \sqrt{ \tan(x) }  +  \sqrt{ \cot(x) }  -  \sqrt{2} }  \bigg|+C }

Attachments:
Answered by Anonymous
229

STEP-BY-STEP EXPLANATION:

.

A =  \displaystyle \sf {\int \bigg( \sqrt{ cotx } - \sqrt{tanx} \bigg ) \: dx} \\

Let's \:  Substitute,

 \implies \sf \tan x =  {y}^{2}

 \implies \sf  { \sec}^{2}  x = 1 +  \tan^{2}  x \\

 \implies  \sf { \sec}^{2}  x = 1 + y^{4}   \\

 \implies \sf  { \sec} ^{2}   x \:   \sf{dx} = 2 y  \: dy  \\

 \implies \sf    \sf{dx} =  \frac{2 y }{ {  \sec  }^{2} x} \: dy  \\

 \implies \sf    \sf{dx} =  \frac{2 y }{ 1 +  {y}^{4} } \: dy  \\

As \:  we  \: know \:  that,

  •  \sf  \cot A =  \frac{1}{ \tan A }  \\

\implies A =  \displaystyle \sf {\int \bigg( \sqrt{ cotx } - \sqrt{tanx} \bigg ) \: dx} \\

\implies A =  \displaystyle \sf {\int \bigg( \sqrt{ \frac{1}{ {y}^{2} } } - \sqrt{ {y}^{2} } \bigg )  \frac{2y}{1 +  {y}^{4} } \: dy } \\

\implies A =  \displaystyle \sf {\int \bigg(  \frac{1}{y}  - y  \bigg )  \frac{2y}{1 +  {y}^{4} } \: dy } \\

\implies A =  \displaystyle \sf {\int \bigg(  \frac {1 -  {y}^{2} }{y}  \bigg )  \frac{2y}{1 +  {y}^{4} } \: dy } \\

\implies A =  \displaystyle \sf {\int  \frac{1 -  {y}^{2} }{1 +  {y}^{4} } \: dy  \times  \frac{ \frac{1}{ {y}^{2} } }{ \frac{1}{ {y}^{2} } } } \\

\implies A =  \displaystyle \sf {\int  \frac{ \frac{1}{ {y}^{2} }  -  1 }{ {y}^{2}  +   \frac{1}{ {y}^{2} }   } \: dy } \\

\implies A =  \displaystyle \sf {\int  \frac{ \frac{1}{ {y}^{2} }  -  1 }{ {y}^{2}  +   \frac{1}{ {y}^{2} } + 2 - 2   } \: dy } \\

\implies A =  \displaystyle \sf {\int  \frac{ \frac{1}{ {y}^{2} }  -  1 }{  {(y +  \frac{1}{y}) }^{2}  - 2   } \: dy }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because  {a}^{2} +  {b}^{2} + 2ab = (a + b) ^{2}   \\

Let's \:  Substitute,

  •  \sf y +  \frac{1}{y}  = f \\

 \sf ( \frac{1}{ {y}^{2} } - 1)dy = df \\

We \:  find,

\implies A =  \displaystyle \sf {\int  \frac{ df }{ {f}^{2}  - 2   } } \\

\implies A =  \displaystyle \sf {\int  \frac{ df }{ {f}^{2}  - 2   } } =   \frac{1}{2 \sqrt{2} } log \bigg( \frac{f +  \sqrt{2} }{f -  \sqrt{2} }  \bigg) + c    \\

As \:  we  \: know \:  that,

 \implies \sf y +  \frac{1}{y}  = f \\

 \implies \sf  \sqrt{tanx}  +  \sqrt{cotx}  = f \\

Therefore,

\implies\sf A =   \frac{1}{2 \sqrt{2} } log \bigg( \frac{f +  \sqrt{2} }{f -  \sqrt{2} }  \bigg) + c    \\

\implies \sf A =   \frac{1}{2 \sqrt{2} } log \bigg( \frac{ \sqrt{tanx} +  \sqrt{cotx}   +  \sqrt{2} }{ \sqrt{tanx} +  \sqrt{cotx}   -  \sqrt{2} }  \bigg) + c    \\   \\

REQUIRED ANSWER,

.

  • \sf A =   \frac{1}{2 \sqrt{2} } log \bigg( \frac{ \sqrt{tanx} +  \sqrt{cotx}   +  \sqrt{2} }{ \sqrt{tanx} +  \sqrt{cotx}   -  \sqrt{2} }  \bigg) + c      \\
Similar questions