Math, asked by MichWorldCutiestGirl, 5 hours ago


\large \displaystyle \sf \pink{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}
don't dare for Spam !​

Answers

Answered by Anonymous
35

Step-by-step explanation:

Given

\large \displaystyle \sf \orange{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}

Solution

Refer To Attachment

  • Hope the Attachment iz Clear.

Hope It Helps!!!

 \sf \pmb{\longmapsto} \: \ddot \smile

Attachments:
Answered by Itzintellectual
0

Step-by-step explanation:

Step-by-step explanation:

★Given

\large \displaystyle \sf \orange{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}

n→∞

lim

n

2

0

n

1

x

2018x+1

dx

★Solution

Refer To Attachment

Hope the Attachment iz Clear.

Hope It Helps!!!

\sf \pmb{\longmapsto} \: \ddot \smile

¨

Similar questions