Math, asked by Anonymous, 13 hours ago

 \large \displaystyle \sf \red{\int \frac{ \sin ^{8}x -   {cos}^{8}  x}{1 -  {2sin}^{2} x \:  {cos}^{2}x } }

Answers

Answered by aniket5712
0

I HOPE THIS WILL BE THE BEST ANSWER FOR YOU ❤️❤️

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {sin}^{8}x -  {cos}^{8} x}{1 - 2 {sin}^{2}x \:  {cos}^{2} x} \: dx

can be rewritten as

 \rm \:  =  \: \displaystyle\int\rm  \frac{ {( {sin}^{2} x)}^{4}  -  {( {cos}^{2}x)}^{4} }{1 - 2 {sin}^{2}x \:  {cos}^{2}x} \: x

We know, from algebraic Identities

 \red{\boxed{\tt{ \:  {x}^{4} -  {y}^{4} = (x - y)(x + y)( {x}^{2} +  {y}^{2}) \: }}}

So, using this identity, we get

 \rm \:  =  \: \displaystyle\int\rm  \frac{( {sin}^{2}x -  {cos}^{2}x)( {sin}^{2}x +  {cos}^{2}x)( {sin}^{4}x +  {cos}^{4}x)}{1 - 2 {sin}^{2}x \:  {cos}^{2}x} \: dx

We know,

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}

So, we get

 \rm \:  =  \: -  \:  \displaystyle\int\rm  \frac{( {cos}^{2}x -  {sin}^{2}x)(1)[ {( {sin}^{2}x) }^{2}  +  {( {cos}^{2}x)}^{2}]}{1 - 2 {sin}^{2}x \:  {cos}^{2} x} \: dx

We know,

\boxed{\tt{  {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy \: }}

and

\boxed{\tt{  {cos}^{2}x -  {sin}^{2}x = cos2x}}

So, using this, we get

 \rm \:  =  \:  -  \: \displaystyle\int\rm  \frac{cos2x[ {( {cos}^{2}x +  {sin}^{2}x)}^{2}  - 2 {sin}^{2} x \:  {cos}^{2}x] }{1 - 2 {sin}^{2}x \:  {cos}^{2} x}  \: dx

 \rm \:  =  \:  -  \: \displaystyle\int\rm  \frac{cos2x[ {( 1)}^{2}  - 2 {sin}^{2} x \:  {cos}^{2}x] }{1 - 2 {sin}^{2}x \:  {cos}^{2} x}  \: dx

 \rm \:  =  \:  -  \: \displaystyle\int\rm  \frac{cos2x[ 1  - 2 {sin}^{2} x \:  {cos}^{2}x] }{1 - 2 {sin}^{2}x \:  {cos}^{2} x}  \: dx

 \rm \:  =   \:  - \: \displaystyle\int\rm cos2x \: dx

 \rm \:  =  \:  -  \: \dfrac{sin2x}{2}  + c

Hence,

\rm :\longmapsto\:\boxed{\tt{  \: \displaystyle\int\rm  \frac{ {sin}^{8}x -  {cos}^{8} x}{1 - 2 {sin}^{2}x \:  {cos}^{2} x} \: dx =  -  \frac{sin2x}{2} + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions