Math, asked by Anonymous, 5 hours ago

 \large  \displaystyle \sf \red{ \lim_{ n \to \infty} {n}^{2}  \int_{0}^{ \frac{1}{n} }  {x}^{2018x + 1} \:  dx}

Answers

Answered by IamIronMan0
47

Answer:

 \huge \pink{ \frac{1}{2} }

Step-by-step explanation:

Given limit can be written as

\displaystyle   \lim_{ n \to \infty}  \frac{\int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}{ \frac{1}{ {n}^{2} } }  \\

Its quite easy to show that it's now 0/0 form of limit . So

Now use L hospital rule . To differentiate numerator we will use fundamental theorem of calculas .

   \boxed{\red{{\frac{d}{dx}  \int_{0} ^{y} f(t) \: dt  = f(y). \frac{dy}{dx}} }}\\

Our limit becomes

\displaystyle   \lim_{ n \to \infty}  \:  \frac{( \frac{1}{n} ) ^{2018. \frac{1}{n}  + 1} . \frac{d}{dn}( \frac{1}{n}  )}{ \frac{ - 2}{ {n}^{3} } }  \\  \\  = \displaystyle   \lim_{ n \to \infty}  \:  \frac{\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}  }   \frac{1}{n} . ( \frac{ - 1}{n {}^{2} }  )}{ \frac{ - 2}{ {n}^{3} } }  \\  \\  = \displaystyle   \lim_{ n \to \infty}  \:  \frac{\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}}  } {2} \\  \\  =  \displaystyle  \frac{1}{2}   \lim_{ n \to \infty}   \exp  \bigg\{ \log\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}}  \bigg \} \\  \\  =  \frac{1}{2} \lim_{ n \to \infty}   \exp  \bigg\{ \frac{2018}{n}  \log\bigg( \frac{1}{n}  \bigg) \bigg \} \\  \\ again \: l \: hopital \: rule \\  \\  =  \frac{1}{2} \lim_{ n \to \infty}   \exp  \bigg\{ 2018\bigg( \frac{1}{ \frac{1}{n} }  \bigg) .\frac{ - 1}{  {n}^{2}  }  \bigg \} \\  \\  =  \frac{1}{2}  \exp \{0 \}  =  \frac{1}{2}

Answered by tname3345
58

Answer:

Step-by-step explanation:

The answer is 1/2 {0} 1/2

Attachments:
Similar questions