Math, asked by sajan6491, 6 hours ago

\large \displaystyle \sf \red{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}

Answers

Answered by IamIronMan0
62

Answer:

 \huge \red{ \frac{1}{2} }

Step-by-step explanation:

Given limit can be written as

\displaystyle   \lim_{ n \to \infty}  \frac{\int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}{ \frac{1}{ {n}^{2} } }  \\

Now use L hospital rule . To differentiate numerator we will use fundamental theorem of calculas .

  \frac{d}{dx}  \int_{0} ^{y} f(t) \: dt  = f(y). \frac{dy}{dx} \\

Our limit becomes

\displaystyle   \lim_{ n \to \infty}  \:  \frac{( \frac{1}{n} ) ^{2018. \frac{1}{n}  + 1} . \frac{d}{dn}( \frac{1}{n}  )}{ \frac{ - 2}{ {n}^{3} } }  \\  \\  = \displaystyle   \lim_{ n \to \infty}  \:  \frac{\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}  }   \frac{1}{n} . ( \frac{ - 1}{n {}^{2} }  )}{ \frac{ - 2}{ {n}^{3} } }  \\  \\  = \displaystyle   \lim_{ n \to \infty}  \:  \frac{\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}}  } {2} \\  \\  =  \displaystyle  \frac{1}{2}   \lim_{ n \to \infty}   \exp  \bigg\{ \log\bigg( \frac{1}{n}  \bigg) ^{2018. \frac{1}{n}}  \bigg \} \\  \\  =  \frac{1}{2} \lim_{ n \to \infty}   \exp  \bigg\{ \frac{2018}{n}  \log\bigg( \frac{1}{n}  \bigg) \bigg \} \\  \\ again \: l \: hopital \: rule \\  \\  =  \frac{1}{2} \lim_{ n \to \infty}   \exp  \bigg\{ 2018\bigg( \frac{1}{ \frac{1}{n} }  \bigg) .\frac{ - 1}{  {n}^{2}  }  \bigg \} \\  \\  =  \frac{1}{2}  \exp \{0 \}  =  \frac{1}{2}

Answered by tname3345
57

Step-by-step explanation:

given :

tex]\large \displaystyle \sf \red{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx} [/tex]

to find :

\large \displaystyle \sf \red{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx} = ?

\large \displaystyle \sf \red{ \lim_{ n \to \infty} {n}^{2} \int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx} = ?

solution :

  • please check the attached file

Attachments:
Similar questions