Math, asked by sajan6491, 6 hours ago

 \large \displaystyle \tt \color{green}{\lim_{x \to0}} \bigg[ \frac{1}{ {x}^{2} } - \frac{1}{(x \cos( \alpha x))^{2} } = - 9\bigg]


Find the value of alpha​​

Answers

Answered by testingpurpose152001
3

Answer:

Step-by-step explanation:

\large \displaystyle \tt \lim_{x \to 0}} \bigg[ \frac{1}{ {x}^{2} } - \frac{1}{(xcos(\alpha x))^2} = - 9\bigg]

or, \large \displaystyle \tt \lim_{x \to 0}} \bigg[ \frac{1}{ {x}^{2} } - \frac{1}{x^2cos^{2}(\alpha x)} = - 9\bigg]\\or, \large \displaystyle \tt \lim_{x \to 0}} \frac{1}{x^2} \bigg[1- \frac{1}{cos^{2}(\alpha x)} = - 9\bigg]\\or, \large \displaystyle \tt \lim_{x \to 0}} \frac{1}{x^2} \bigg[\frac{cos^{2}{(\alpha x)}-1}{cos^{2}(\alpha x)} = - 9\bigg]\\or, \large \displaystyle \tt \lim_{x \to 0}} \frac{1}{x^2} \bigg[\frac{1-cos^{2}{(\alpha x)}}{cos^{2}(\alpha x)} =  9\bigg]\\

or, \large \displaystyle \tt \lim_{x \to 0}} \frac{1}{x^2} \bigg[\frac{sin^{2}{(\alpha x)}}{cos^{2}(\alpha x)} =  9\bigg]\\or, \large \displaystyle \tt \lim_{x \to 0}}  \bigg[\frac{sin^{2}{(\alpha x)}}{(\alpha x)^2}\cdot \frac{\alpha^2}{cos^{2}{\alpha x}} =  9\bigg]\\or, \bigg(\large \displaystyle \tt \lim_{x \to 0 } \frac{sin(\alpha x)}{\alpha x} \bigg)^2\cdot \frac{\alpha^2}{\bigg(\large \displaystyle \tt \lim_{x \to 0 } (cos \alpha x) \bigg)^2} = 9\\           or, (1)^2 . \frac{\alpha^2}{(1)^2} = 9\\or, \alpha^2 = 9~~ (\because  \lim_{x \to 0} \frac{\sin{x}}{x} = 1\text{ and } \lim_{x \to 0} \cos{x} = 1~)\\or, \alpha = \pm3

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \tt \color{green}{\lim_{x \to0}} \bigg[ \frac{1}{ {x}^{2} } - \frac{1}{(x \cos( \alpha x))^{2} }\bigg] =  - 9

can be rewritten as

\rm :\longmapsto\:\displaystyle \rm {\lim_{x \to0}} \bigg[ \frac{1}{ {x}^{2} } - \frac{1}{ {x}^{2}  \cos^{2} \alpha x }\bigg] =  - 9

\rm :\longmapsto\:\displaystyle \rm {\lim_{x \to0}} \bigg[ \frac{ {cos}^{2}  \alpha x - 1}{ {x}^{2}  \cos^{2} \alpha x }\bigg] =  - 9

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{1}{ {cos}^{2} \alpha x} \times \displaystyle\lim_{x \to 0}\rm  \frac{ - (1 -  {cos}^{2}  \alpha x)}{ {x}^{2} }  =  - 9

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1 \: }}} \\

So, using this identity, we get

\rm :\longmapsto\:  \dfrac{1}{ {cos}^{2}0} \times \displaystyle\lim_{x \to 0}\rm  \frac{{sin}^{2}\alpha x}{ {x}^{2} }  =   9

\rm :\longmapsto\:  1\times \displaystyle\lim_{x \to 0}\rm  \frac{{sin}^{2}\alpha x}{ { \alpha }^{2} {x}^{2} }   \times  { \alpha }^{2} =   9 \\

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} \:  =  \: 1 \: }}} \\

So, using this identity, we get

\rm :\longmapsto\: {1}^{2} \times  { \alpha }^{2}  = 9

\rm :\longmapsto\:{\alpha }^{2}  = 9

\rm :\longmapsto\:{\alpha }^{2}  =  {3}^{2}

\bf\implies \: \alpha  \:  =  \:  \pm \: 3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} \:  =  \: 1 \: }}} \\

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} \:  =  \: 1 \: }}} \\

 \pink{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} \:  =  \: 1 \: }}} \\

 \gray{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }}} \\

 \blue{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }}} \\

Similar questions