Math, asked by Anonymous, 10 months ago

 \Large \frac{ \tan( \alpha ) }{1 -  \cot( \alpha ) }  +  \frac{ \cot( \alpha ) }{1 -  \tan( \alpha ) } is Equal to which of the following Option :

1)1 -  \tan( \alpha )  -  \cot( \alpha )
2)1 +  \tan( \alpha )  -  \cot( \alpha )
3)1 -  \tan( \alpha )  +  \cot( \alpha )
4)1 +  \tan( \alpha )  +  \cot( \alpha )

Answers

Answered by Anonymous
111

AnswEr :

 \longrightarrow\dfrac{ \tan( \alpha ) }{1 - \cot( \alpha ) } + \dfrac{ \cot( \alpha ) }{1 - \tan( \alpha )}

  • we will change all cot α into tan α

\longrightarrow\dfrac{ \tan( \alpha ) }{1 -  \frac{1}{ \tan( \alpha ) }  } + \dfrac{  \frac{1}{ \tan( \alpha ) }  }{1 - \tan( \alpha )}

\longrightarrow\dfrac{ \tan( \alpha ) }{\frac{ \tan( \alpha)  - 1}{ \tan( \alpha ) }  } + \dfrac{  \frac{1}{ \tan( \alpha ) }  }{1 - \tan( \alpha )}

\longrightarrow\dfrac{ \tan( \alpha ) \times  \tan( \alpha )  }{\tan( \alpha)  - 1}+  \bigg(\dfrac{1}{ \tan( \alpha ) }  \times  \dfrac{1}{{1 - \tan( \alpha )}} \bigg)

\longrightarrow\dfrac{ \tan^{2} ( \alpha )  }{\tan( \alpha)  - 1}+  \dfrac{1}{ \tan( \alpha )  -  { \tan}^{2}  (\alpha )}

  • taking Negative Common

\longrightarrow\dfrac{ \tan^{2} ( \alpha )  }{\tan( \alpha)  - 1}+  \dfrac{1}{   - (-\tan( \alpha ) + { \tan}^{2}  (\alpha))}

\longrightarrow\dfrac{ \tan^{2} ( \alpha )  }{\tan( \alpha)  - 1} -  \dfrac{1}{( { \tan}^{2}  (\alpha ) -  \tan( \alpha ) )}

\longrightarrow\dfrac{1}{\tan( \alpha ) - 1} \times\bigg( \tan^{2} ( \alpha )  -  \dfrac{1}{ \tan( \alpha )}\bigg)

\longrightarrow\dfrac{1}{\tan( \alpha ) - 1} \times\bigg( \dfrac{ { \tan }^{3}( \alpha )  - 1}{ \tan( \alpha )}\bigg)

\longrightarrow\dfrac{1}{\tan( \alpha ) - 1} \times\bigg( \dfrac{ { \tan }^{3}( \alpha )  -  {1}^{3} }{ \tan( \alpha )}\bigg)

  • - = (a - b)( + ab + )

\longrightarrow\dfrac{1}{ \cancel{\tan( \alpha ) - 1}} \times\dfrac{  \cancel{(\tan( \alpha ) - 1)}( \tan ^{2} ( \alpha ) +  {1}^{2}  +  1 \times \tan( \alpha ))  }{ \tan( \alpha )}

\longrightarrow \dfrac{ \tan^{2} ( \alpha ) + 1 +  \tan( \alpha )  }{ \tan( \alpha ) }

\longrightarrow  \cancel\dfrac{ \tan^{2} ( \alpha )}{ \tan( \alpha ) }  + \dfrac{ 1}{ \tan( \alpha ) }  +  \cancel\dfrac{ \tan ( \alpha )}{ \tan( \alpha ) }

 \longrightarrow \tan( \alpha )  +  \cot( \alpha )  + 1

 \longrightarrow 1 + \tan( \alpha )  +  \cot( \alpha )

\therefore\underline{\sf{Correct\: Option\:is\:4)1 + \tan( \alpha ) + \cot( \alpha ) }}

Answered by Anonymous
19

Answer:

Refer to the attachment for Solution.

Please Mark Brainliest ❤️

Attachments:
Similar questions