Math, asked by SɳσɯDɾσρ, 15 hours ago

 \large{ \frak{ \underline{ \blue{Q \orange{u} \red{es} \green{ti} \pink{on}}}}}

The curved surface area of a cone is 12320 sq. cm, if the radius of its base is 56 cm, find its height.

don't spam ✖​

Answers

Answered by mrrahul4926
11

Step-by-step explanation:

radius of the base of the cone = 56cm

We know that curve d surface area of a cone =πrl.

Given that curved surface area of a cone = 12320.

πrl= 12320

22/7 * 56* l=12320

22 * 8 * l=12320

176*l= 12320

l=12320/ 176 =70

We know that height of the cone,

h = √l^2-r^2

= √70²-56²

= √4900 - 3136

= √1764

= 42.

Therefore the height of the cone =

42m.

Answered by Ʀíɗɗℓεʀ
352

Given :

  • The curved surface area of a cone is 12320 sq. cm, if the radius of its base is 56 cm.

~

To Find :

  • Height of the cone ?

~

{\rule{190pt}{2pt}}

SolutioN :

  • Let us assume that, the slant height of a cone is x cm.

~

{\bf{\dag}} Formula Used :

~

\qquad\star~{\underline{\boxed{\pmb{\sf{CSA~of~cone~=~πrl}}}}}

\qquad\star~{\underline{\boxed{\pmb{\sf{l^2~=~h^2~+~r^2}}}}}

~

{\bf{\dag}} According to the Question :

~

\qquad{\sf\dashrightarrow{12320~=~πrl}}

~

\qquad{\sf\dashrightarrow{12320~=~\dfrac{22}{\cancel{7}}~×~\cancel{56}~×~x}}

~

\qquad{\sf\dashrightarrow{12320~=~22~×~8~×~x}}

~

\qquad{\sf\dashrightarrow{12320~=~176~×~x}}

~

\qquad{\sf\dashrightarrow{12320~=~176x}}

~

\qquad{\sf\dashrightarrow{x~=~\cancel\dfrac{12320}{176}}}

~

\qquad\dashrightarrow{\pmb{\underline{\boxed{\purple{\frak{x~=~70 }}}}}}

~

Therefore,

~

\qquad The length of the cone is 70 cm.

~

Now,

~

\qquad{\sf:\implies{(70)^2~=~h^2~+~(56)^2}}

~

\qquad{\sf:\implies{4900~=~h^2~+~(56)^2}}

~

\qquad{\sf:\implies{4900~=~h^2~+~3136}}

~

\qquad{\sf:\implies{h^2~=~4900~-~3136}}

~

\qquad{\sf:\implies{h^2~=~1764}}

~

\qquad{\sf:\implies{h~=~\sqrt{1764}}}

~

\qquad:\implies{\pmb{\underline{\boxed{\pink{\frak{h~=~42 }}}}}}

~

Hence,

~

\qquad The height of the cone is 42 cm.

~

{\rule{190pt}{2pt}}

Similar questions