Math, asked by Rubellite, 3 months ago

\Large\frak{\underline{\red{Question:}}}
(In the picture attached)
________________
\Large\frak{\underline{\red{Information\:'bout\:Question:}}}
Chapter name - Heights & Distances
Class - 10th
Source - NCERT Exemplar/ R.D Sharma book{CBSE}
____________________

Diagram needed!
It would be okay if you don't skip any step while solving.

All the best :)​

Attachments:

Answers

Answered by kartikm63
2

Answer:

see the attachments

actually, this question appeared in my pre boards and I got full marks, that's why I am suggesting you this answer

Step-by-step explanation:

please mark it as brainliest and follow

Attachments:
Answered by Anonymous
10

⠀⠀⠀⠀⠀⠀⠀⠀⠀Diagram in the attachment.

\huge\bf\underline\mathfrak\red{Given :}

  • \text{Height of the vertical flag-staff,AD  = h.}
  • \text{Angles of elevation of bottom and top = α and β.}

\huge\bf\underline\mathfrak\red{To \: Prove :}

  • \text{Height of the tower =}\sf \dfrac{h \: tan \:  \alpha }{h \: tan \:  \beta }

\huge\bf\underline\mathfrak\red{Answer :}

It is given that, height of the flag staff, AD = h.

Let height of the tower, AB be denoted by (H).

  • It is also provided that, Angle of elevation of top and bottom of the flag-staff of the plane is ∠DCB = β and ∠ACB = α, respectively.

⠀⠀⠀⠀⠀⠀⠀⠀⠀Let CB be x

⠀⠀ \underline\text{Now In ∆ACB,}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf tan \:  \alpha  =  \dfrac{AB}{CB \:}  =  \dfrac{H}{x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀[ \text{Since, tanΘ} = \sf \dfrac{opposite \: side \: }{base} ]

⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf x \:  =  \: \dfrac{h}{tan \:  \alpha } \text{[Equation (i)]}

⠀⠀\underline\text{In ∆DCB,}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{tanβ =} \sf \dfrac{DB}{CB}  =  \:  \dfrac{DA \:  +  \: AB}{x}  =  \dfrac{h \:  +  \: H}{x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf x =  \dfrac{h \:  +  \: H}{tan \:  \beta } \text{[Equation (ii)]}

\underline\text{From Equation 1 and 2,}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf \dfrac{H}{tan \:  \alpha }  =  \dfrac{H \:  +  \: h}{tan \:  \beta }

\underline\text{On cross multiplying :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf H \: tan \:  \beta   = (H \:  + h)tan \:  \alpha

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf H \: tan \:  \beta  =  \: H \: tan \:  \alpha  \:  + h \: tan \:  \alpha

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf H \: tan \:  \beta  \:  - H \: tan \:  \alpha  = h \: tan \:  \alpha

\underline\text{Taking H as common :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf H  \: ( \: tan \:   \beta  \:  - tan \:  \alpha  \: ) \:  =  \: h \: tan \:  \alpha

\underline\text{On re-arranging :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf\purple{H \:  = \:  \dfrac{h \: tan \:  \alpha }{tan \:  \beta \:  -  \: tan \:  \alpha  }}

\bf\underline\mathfrak{Hence, \: Proved }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Attachments:
Similar questions