If x/y+z + y/z+x + z/x+y = 1, then find the value of x²/y+z + y²/z+x + z²/x+y
Answers
Answered by
4
x²/y+z + y²/z+x + z²/x+y = 0
Step-by-step explanation:
x/y+z + y/z+x + z/x+y = 1
- Multiplying (x+y+z) both side
x(x+y+z)/y+z + y(x+y+z)/z+x + z(x+y+z)/x+y = (x+y+z)
x²+x(y+z)/y+z + y²+y(x+z)/z+x + z²+z(x+y)/x+y = (x+y+z)
x²/y+z +x + y²/z+x + y + z²/x+y + z = x+y+z
x²/y+z + y²/z+x + z²/x+y = x + y + z - x - y - z
x²/y+z + y²/z+x + z²/x+y = 0
__Hence Solved
Answered by
1
Answer:
x²/y+z + y²/z+x + z²/x+y = 0
Step-by-step explanation:
x/y+z + y/z+x + z/x+y = 1
- Multiplying (x+y+z) both side
x(x+y+z)/y+z + y(x+y+z)/z+x + z(x+y+z)/x+y = (x+y+z)
x²+x(y+z)/y+z + y²+y(x+z)/z+x + z²+z(x+y)/x+y = (x+y+z)
x²/y+z +x + y²/z+x + y + z²/x+y + z = x+y+z
x²/y+z + y²/z+x + z²/x+y = x + y + z - x - y - z
x²/y+z + y²/z+x + z²/x+y = 0
__Hence Solved___
Similar questions