Math, asked by BrainlyPARCHO, 1 month ago

\large \green {  \fcolorbox{purple}{WHITE}{  \:  \textsf{\ \ \ \ddag \ \ \ \ \ \orange{QUESTION}\ \ \ \ \ \ddag \ \ \ }}}

If x/y+z + y/z+x + z/x+y = 1, then find the value of x²/y+z + y²/z+x + z²/x+y​

Answers

Answered by OoINTROVERToO
4

x²/y+z + y²/z+x + z²/x+y = 0

Step-by-step explanation:

x/y+z + y/z+x + z/x+y = 1

  • Multiplying (x+y+z) both side

x(x+y+z)/y+z + y(x+y+z)/z+x + z(x+y+z)/x+y = (x+y+z)

+x(y+z)/y+z + +y(x+z)/z+x + +z(x+y)/x+y = (x+y+z)

x²/y+z +x + /z+x + y + z²/x+y + z = x+y+z

x²/y+z + y²/z+x + z²/x+y = x + y + z - x - y - z

x²/y+z + y²/z+x + z²/x+y = 0

__Hence Solved

Answered by ItzBlinkingstar
1

Answer:

\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\

x²/y+z + y²/z+x + z²/x+y = 0

Step-by-step explanation:

x/y+z + y/z+x + z/x+y = 1

  • Multiplying (x+y+z) both side

x(x+y+z)/y+z + y(x+y+z)/z+x + z(x+y+z)/x+y = (x+y+z)

x²+x(y+z)/y+z + y²+y(x+z)/z+x + z²+z(x+y)/x+y = (x+y+z)

x²/y+z +x + y²/z+x + y + z²/x+y + z = x+y+z

x²/y+z + y²/z+x + z²/x+y = x + y + z - x - y - z

x²/y+z + y²/z+x + z²/x+y = 0

__Hence Solved___

Similar questions