Physics, asked by Anonymous, 1 year ago

\large{HOLA MATES !!} ❤️✌️

For a given light of wavelength 600 nm , wavelength width is 0.2 nm . Find frequency width ?

DON'T SPAM !!

Answers

Answered by TPS
32

 \text{Wavelength of light}( \lambda )= 600 \: nm

 \text{Wavelength width}(  \delta \lambda )= 0.2 \: nm

 \text{Wavelength range} =  \lambda  \pm  \delta \lambda =  600 \: nm  \pm 0.2nm
________________________________

\lambda_{lower} = (600 - 0.2)nm = 599.8nm = 5.998 \times  {10}^{ - 7} m

\lambda_{upper} = (600  + 0.2)nm = 600.2nm = 6.002 \times  {10}^{ - 7} m

_______________________________

f_{upper} = \frac{c}{\lambda_{lower}} =  \frac{3 \times  {10}^{8} }{5.998 \times  {10}^{ - 7} }  = 5.001667 \times  {10}^{14}  \: hz

f_{lower} = \frac{c}{\lambda_{upper}} =  \frac{3 \times  {10}^{8} }{6.002 \times  {10}^{ - 7} }  = 4.998334\times  {10}^{14}  \: hz

_____________________________

\text{Range of frequency} = f_{upper} - f_{lower}  \\  \\  = 5.001667 \times  {10}^{14}  - 4.998334 \times  {10}^{14}  \\  \\  =0 .003333 \times  {10}^{14}  \\  \\  = 3.333 \times  {10}^{11} hz

____________________________

\text{frequency width} = \frac{range}{2}  \\  \\  =  \frac{3.333 \times  {10}^{11} }{2}  = 1.667 \times  {10}^{11}  \: hz


\boxed{ \large\red{ \text{ frequency width} = 1.667 \times  {10}^{11} \: hz}}

Anonymous: thank you sooo much !!!
TPS: :-)
Answered by shreya2412
2

Answer:1.67 × 10^11 Hz

Explanation:

∆f = c∆lambda/ lambda^2

Similar questions