Math, asked by Anonymous, 1 day ago


 \large\huge\color{green} \sf{\dfrac{d}{dx} \left(\dfrac{((sinx {)}^{sinx {} } ) ^{ ^{sinx} } }{ ln(x) } \right) }

Answers

Answered by talpadadilip417
2

Step-by-step explanation:

→Use Quotient Rule to find the derivative of \sf\frac{\sin^{\sin^{\sin{x}}x}x}{\ln{x}}. The quotient rule states that \sf(\frac{f}{g})'=\frac{f'g-fg'}{{g}^{2}} .

\tt\red{\implies\frac{\ln{x}(\frac{d}{dx} \sin^{\sin^{\sin{x}}x}x)-\sin^{\sin^{\sin{x}}x}x(\frac{d}{dx} \ln{x})}{{\ln{x}}^{2}}}

→Use Chain Rule on \frac{d}{dx} \sin^{\sin^{\sin{x}}. Let \sf u=\sin^{\sin{x}}x\ln{(\sin{x})}. The derivative of \sf{u}^{u} is u lnu.

\tt\pink{\frac{\implies\ln{x}\sin^{\sin^{\sin{x}}x}x(\frac{d}{dx} \sin^{\sin{x}}x\ln{(\sin{x})})-\sin^{\sin^{\sin{x}}x}x(\frac{d}{dx} \ln{x})}{{\ln{x}}^{2}}}

\tt\orange{\implies\frac{\ln{x}\sin^{\sin^{\sin{x}}x}x(\sin^{\sin{x}}x(\cos{x}\ln{(\sin{x})}+\cos{x})\ln{(\sin{x})}+\sin^{\sin{x}-1}x\cos{x})-\frac{\sin^{\sin^{\sin{x}}x}x}{x}}{{\ln{x}}^{2}}}

Answered by OoAryanKingoO78
11

Question:-

 \large\huge\color{blue} \tt{\dfrac{d}{dx} \left(\dfrac{((sinx {)}^{sinx {} } ) ^{ ^{sinx} } }{ ln(x) } \right) }

\huge{\large{\underline{\large \sf{Solution}}}}

Apply the quotient rule:-

\rm :\implies{(\dfrac{d}{dx} \: f(x)) g(x) - f(x) \: (\dfrac{d}{dx} g(xI))}

\rm :\implies{f(x) - sin(x)}

\rm :\implies{g(x) - In(x)}

\quad\sf :\longmapsto{\dfrac{(\dfrac{d}{dx} sin(x)) In (x) - sin(x) (\dfrac{d}{dx} in (x))}{In(x)^{2}}}

\qquad\sf :\longmapsto{(cos(x) In (x) - \dfrac{sin(x)}{x}).\dfrac{I}{In(x)^{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

HOPES IT HELPS!:)

Similar questions