Math, asked by 0neAboveAll, 1 month ago

 \large \mathbb \blue{ \fcolorbox{blue}{black}{   \:  \:⫷ ⫷ \:  \: Q  : U  :E : S : T : I : O : N  \:  \:  ⫸⫸ \:   }}



Find the area of the triangle whose coordinates of vertices are A(6,3), B(-3,5) and (4,-2).


Answers

Answered by OoINTROVERToO
0

\large{\blue{\bold{Formula \: Used}}} \:  \\  \scriptsize{\bf \: Area \: of \: triangle = \frac{1}{2} \times x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2})}  \\  \\ \large{\purple{\bold{\underline{Step \: by \: step \: Solution:}}}} \: \\  \small\tt \:{ Let \: us \: consider \: the \: respective \: coordinates \: as : } \\  \bf \: A(6, 3)  \: \rightarrow \:  \: (x_{1}, y_{1}) \\  \bf \: B(-3,5) \rightarrow \:  \: (x_{2}, y_{2}) \\  \bf \: C(4,-2) \rightarrow \:  \: (x_{3}, y_{3}) \\  \\  \large \bold{Calculation }\\ \sf  \small{ \: Area \: of \: triangle = \frac{1}{2} \times 6(5 - ( - 2)) - 3( - 2 - 3) + 4(3 - 5)} \\ \\   \small{\sf \: Area \: of \: triangle = \frac{1}{2} \times( 6 \times 7) +(3 \times 5) - (4 \times 2) }\\ \\  \sf \: Area \: of \: triangle = \frac{1}{2}\times( 42 + 15 - 8) \\ \\  \sf \: Area \: of \: triangle = \frac{1}{2} \times 49 \\ \\  \sf \: Area \: of \: triangle = 24.5 \: \\  \\   \\  \large\boxed{ \sf \: The \: area \: of \: triangle \: is \: 24.5 \: Square \: units.}

Answered by KavyaSwastika
0

Answer:

area=24.5 sq is right answer

Similar questions