Physics, asked by Anonymous, 5 months ago

\Large\mathbb\pink{HLO\:BRAINLLIAC} \\

A stone tied to the end of a string 50 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 10 revolutions in 20 s, what is the magnitude of acceleration of the stone.

✒ No Spam.​

Answers

Answered by DARLO20
7

\Large\bf{\color{indigo}GiVeN,} \\

  • A stone is tied to one end of string.

  • Length of the string is 50 cm.

  • Stone with string is whirled in a horizontal circle with constant speed.

  • The stone makes 10 revolutions in 20s.

\Large\bf{\color{cyan}To\:FiNd,} \\

  • The magnitude of acceleration of the stone.

\Large\bf{\color{red}CaLcUlAtIoN,} \\

¤ See the attachment.

✒ Given that stone with string is whirled in a horizontal circle with constant speed.

✒ Means the centripetal acceleration which keeps constant speed in rotation.

\bf\pink{And} \\

✒ We know that centripetal acceleration acts along the radius & towards the center of the circle.

\orange\bigstar\:\:\bf\purple{Centripetal\:acceleration\:(a_c)\:=\:{\omega}^2\:r\:}--(1) \\

\bf\blue{Where,} \\

  • \bf{\red{\omega}}\:=\:Angular\:Speed\:

  • \bf{\red{r}}\:=\:Radius\:of\:circle\:

\green\bigstar\:\:\bf\pink{Angular\:Velocity\:(\omega)\:=\:\dfrac{Angular\:Displacement}{Time\:period}\:} \\

\longmapsto\:\:\bf{Angular\:Velocity\:(\omega)\:=\:\dfrac{\Phi}{t}\:} \\

\longmapsto\:\:\bf{Angular\:Velocity\:(\omega)\:=\:\dfrac{10\times {2\pi}}{20}\:} \\

\longmapsto\:\:\bf{Angular\:Velocity\:(\omega)\:=\:\dfrac{20\pi}{20}\:} \\

\longmapsto\:\:\bf\green{Angular\:Velocity\:(\omega)\:=\:\pi\:rad/sec\:} \\

\bf\red{Now,} \\

:\implies\:\:\bf{Centripetal\:acceleration\:(a_c)\:=\:{\pi}^2\times {50}\:} \\

:\implies\:\:\bf{Centripetal\:acceleration\:(a_c)\:=\:50{\pi}^2\:} \\

:\implies\:\:\bf{Centripetal\:acceleration\:(a_c)\:=\:50\times{(3.14)}^2\:} \\

:\implies\:\:\bf{Centripetal\:acceleration\:(a_c)\:=\:50\times{9.8596}\:} \\

:\implies\:\:\bf{Centripetal\:acceleration\:(a_c)\:=\:493.4\:cm/sec^2} \\

:\implies\:\:\bf\blue{Centripetal\:acceleration\:(a_c)\:\approx\:493\:cm/sec^2} \\

\Large\bf\therefore The magnitude of acceleration of the stone is \bf\orange{493\:cm/sec^2}.

Attachments:

MrSanju0123: Awesome, :D
Answered by jitenderthakur34
0

ANSWER ÷

Radius =r=50cm=0.5m

Radius =r=50cm=0.5mIn 20 sec revolution =10

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 Hz

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2Hz

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 r

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14)

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s 2

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s 2 =4.93m/s

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s 2 =4.93m/s 2

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s 2 =4.93m/s 2 =493cm/s

Radius =r=50cm=0.5mIn 20 sec revolution =10In 1 sec revolution =10/20=1/2 HzN=1/2HzNow,Angular velocity =W=2πn=w=2×3.14×0.5Radial Acceleration =w 2 rRadial Acceleration =(3.14) 2 ×0.5m/s 2 =4.93m/s 2 =493cm/s 2

I hope it helps u

Similar questions