Math, asked by iTzSnOw, 3 months ago

 {\LARGE {\mathfrak{\underline {QUESTION}}}}
 \\ \\ \\ \\
 \sf Find \:the\:TSA\:of\:cylinder \:of \:radius \:7\:m\\\sf and\:height\:14\:m

Answers

Answered by suraj5070
94

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Find\: the\: TSA\: of \:cylinder \:of\: radius\: 7 \:m\: and\\\tt height\: 14\:m

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

 \bf Radius \:of\: the\: cylinder = 7\:m

 \bf Height\: of\: the \:cylinder = 14\:m

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

 \bf Total surface area of the cylinder

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Total\: surface\: area\: of \:the \:cylinder}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {TSA_{(Cylinder)}=2\pi r\big(r+h\big)}}}}}}}

  •  \sf TSA =total \:surface \:area \:of \:the \:cylinder
  •  \sf r =radius \:of \:the \:cylinder
  •  \sf h= height \:of \:the \:cylinder

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies TSA=2\times \dfrac{22}{7}\times 7\big(7+14\big)

 \bf \implies TSA=2\times \dfrac{22}{\cancel{7}}\times \cancel{7}\big(21\big)

 \bf \implies TSA=44\times 21

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {TSA=924\:{m}^{2}}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore} The\:TSA\:of\:the \:cylinder \:is\:924\:{m}^{2}}}}}}}}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf CSA\:of \:the \:cylinder =2\pi r h

 \sf TSA\:of \:the \:cylinder =2\pi r(r+h)

 \sf Volume\:of \:the \:cylinder =\pi{r}^{2}h

Answered by BrainlyArnab
3

Answer:

924 m²

Step-by-step explanation:

Given -

Radius of cylinder (r) = 7 m

Height of cylinder (h) = 14 m

To find -

T. S. A. (Total Surface Area) of cylinder

Solution -

T. S. A. of cylinder = 2πr (h + r)

 = 2 \times  \frac{22}{7}  \times 7 \times (14 + 7) {m}^{2}  \\  = 44 \times 21 {m}^{2} \\  = 924 {m}^{2}

Hence T. S. A. of cylinder =924

Mote to know :-

T. S. A of cylinder = 2πr (h+r)

C. S. A of cylinder = 2πrh

Volume of cylinder = πr²h

We can also prove these formulas by opening the cylinder into rectangle. And in the rectangle the breadth will be circumference of base and length will be height.

hope it helps.

Similar questions