Math, asked by NITESH761, 1 month ago


\Large{\mathsf{Challenge:-}}
In a triangle ABC,

\large{\mathsf{ \frac{1}{a + c} +  \frac{1}{b + c} =  \frac{3}{a + b + c}   }}
Find the measure of angle C.
Where a, b and c are sides.

✅ Quality answers required
❌ Don't scam otherwise 20 answers will be reported and Do it yourself.

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

\frac{1}{a + c} + \frac{1}{b + c} = \frac{3}{a + b + c} \\

 \implies\frac{a + b + 2c}{(a + c)(b + c)}  = \frac{3}{a + b + c} \\

 \implies(a + b + 2c)(a + b + c) = 3 (a + c)(b + c) \\

 \implies(a + b + c + c)(a + b + c) = 3 (a + c)(b + c) \\

 \implies(a + b + c )^{2} + c(a + b + c) = 3(ab + ac + cb +  {c}^{2})  \\

 \implies \: a^{2}  + b^{2}  + c ^{2} + 2ab + 2bc + 2ca  + ca + b c+ c ^{2}  = 3ab + 3ac + 3cb +  3{c}^{2}  \\

 \implies \: a^{2}  + b^{2}  + 2ab    = 3ab +  {c}^{2}  \\

 \implies \: a^{2}  + b^{2}  -  {c}^{2}    = 3ab  - 2ab   \\

 \implies \: a^{2}  + b^{2}  -  {c}^{2}    =ab   \\

 \implies \:  \frac{a^{2}  + b^{2}  -  {c}^{2} }{ab}   =1   \\

 \implies \:  \frac{a^{2}  + b^{2}  -  {c}^{2} }{2ab}   = \frac{1}{2}    \\

 \implies \:  \frac{a^{2}  + b^{2}  -  {c}^{2} }{2ab}   = \frac{1}{2} =  \cos(C)     \\

 \implies \:   \cos(C)   =  \frac{1}{2}    \\

 \implies \:   C   =  \frac{\pi}{3}    \\

Answered by sharmababita10021986
1

pls mark me brainliest pls

Attachments:
Similar questions